Research Article

Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds

Published: May 11, 2015
Genet. Mol. Res. 14 (2) : 4703-4715 DOI: https://doi.org/10.4238/2015.May.11.3
Cite this Article:
A.C.S. Clemente, R.M. Guimarães, D.C. Martins, L.A.A. Gomes, F. Caixeta, R.G.E. Reis, S.D.V.F. Rosa (2015). Expression of genes associated with the biosynthetic pathways of abscisic acid, gibberellin, and ethylene during the germination of lettuce seeds. Genet. Mol. Res. 14(2): 4703-4715. https://doi.org/10.4238/2015.May.11.3
3,610 views

Abstract

Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.

Seed germination and dormancy are complex phenomena that are controlled by many genes and environmental factors. Such genes are indicated by phytohormones that interact with each other, and may cause dormancy or promote seed germination. The objective of this study was to investigate gene expression associated with the biosynthetic pathways of abscisic acid (ABA), gibberellic acid (GA), and ethylene (ET) in dormant and germinated lettuce seeds. The expressions of LsNCED, LsGA3ox1, and ACO-B were evaluated in germinating and dormant seeds from the cultivars Everglades, Babá de Verão, Verônica, Salinas, Colorado, and Regina 71. The expressions of LsNCED, LsGA3ox1, and ACO-B were related to the biosynthesis of ABA, GA, and ET, respectively; therefore, the presence of these substances depends on genotype. LsNCED expression only occurred in dormant seeds, and was connected to dormancy. LsGA3ox1expression only occurred in germinated seeds, and was connected to germination. The ACO-B gene was involved in ET biosynthesis, and was expressed differently in germinated and dormant seeds, depending on the genotype, indicating different functions for different characteristics. Furthermore, sensitivity to phytohormones appeared to be more important than the expression levels of LsNCED, LsGA3ox1, or ACO-B.