Research Article

N-nitrosodiethylamine genotoxicity evaluation: a cytochrome P450 induction study in rat hepatocytes

Published: October 05, 2011
Genet. Mol. Res. 10 (4) : 2340-2348 DOI: https://doi.org/10.4238/2011.October.5.4
Cite this Article:
C.A.F. Aiub, G. Gadermaier, I.O. Silva, I. Felzenszwalb, L.F.R. Pinto, F. Ferreira, P. Eckl (2011). N-nitrosodiethylamine genotoxicity evaluation: a cytochrome P450 induction study in rat hepatocytes. Genet. Mol. Res. 10(4): 2340-2348. https://doi.org/10.4238/2011.October.5.4
2,735 views

Abstract

In rats, N-nitrosodiethylamine (NDEA) induces tumors mainly in the liver. This could be because various enzymes are responsible for the metabolic activation of NDEA, besides the hepatic NDEA metabolizing enzyme, CYP2E1. We examined NDEA genotoxicity and cytotoxicity in primary cultures of female rat hepatocytes; we also looked at how it affected CYP mRNA expression. Single incubation with 0.9% NaCl resulted in a mean of 0.2% apoptotic cells, which doubled with 105 μg NDEA/mL. The frequency of necrosis with NDEA treatment was also doubled. Besides the cytotoxic effects, there was also a 4-fold decrease in mitotic index and a 3-fold decrease in the percentage of cells with micronuclei. A significant increase in micronucleus cells when hepatocytes were incubated with 2.1 μg NDEA/mL suggests that DNA repair was inactive. The chromosomal aberration evaluation revealed a discrete dose-response curve. Treatment with NDEA induced increases in CYP mRNA: CYP2B2 (1.8 times) and CYP2E1 (1.6 times) with non-cytotoxic NDEA concentrations (0.21-21 μg/mL). CYP2B1 mRNA levels decreased at 0.21 μg NDEA/mL (2.5-fold), while CYP4A3 mRNA decreased 1.3-fold. NDEA treatment at 2.1 μg/ mL induced a 1.9-fold increase in CYP3A1 mRNA. Understanding the cumulative effects in target cells during precarcinogenesis is crucial to understanding the mode of action of potential carcinogens and in order to develop comprehensive chemical toxicity profiles.

In rats, N-nitrosodiethylamine (NDEA) induces tumors mainly in the liver. This could be because various enzymes are responsible for the metabolic activation of NDEA, besides the hepatic NDEA metabolizing enzyme, CYP2E1. We examined NDEA genotoxicity and cytotoxicity in primary cultures of female rat hepatocytes; we also looked at how it affected CYP mRNA expression. Single incubation with 0.9% NaCl resulted in a mean of 0.2% apoptotic cells, which doubled with 105 μg NDEA/mL. The frequency of necrosis with NDEA treatment was also doubled. Besides the cytotoxic effects, there was also a 4-fold decrease in mitotic index and a 3-fold decrease in the percentage of cells with micronuclei. A significant increase in micronucleus cells when hepatocytes were incubated with 2.1 μg NDEA/mL suggests that DNA repair was inactive. The chromosomal aberration evaluation revealed a discrete dose-response curve. Treatment with NDEA induced increases in CYP mRNA: CYP2B2 (1.8 times) and CYP2E1 (1.6 times) with non-cytotoxic NDEA concentrations (0.21-21 μg/mL). CYP2B1 mRNA levels decreased at 0.21 μg NDEA/mL (2.5-fold), while CYP4A3 mRNA decreased 1.3-fold. NDEA treatment at 2.1 μg/ mL induced a 1.9-fold increase in CYP3A1 mRNA. Understanding the cumulative effects in target cells during precarcinogenesis is crucial to understanding the mode of action of potential carcinogens and in order to develop comprehensive chemical toxicity profiles.