Research Article

Population structure and demographic inferences concerning the endangered onychophoran species Epiperipatus acacioi (Onychophora: Peripatidae)

Published: November 09, 2011
Genet.Mol.Res. 10 (4) : 2775-2785 DOI: 10.4238/2011.November.9.1

Abstract

Epiperipatus acacioi (Onychophora: Peripatidae) is an endemic species of the Atlantic rainforest in southeastern Brazil, with a restricted known distribution, found only in two nearby areas (Tripuí and Itacolomi). Mitochondrial gene COI sequences of 93 specimens collected across the known range of E. acacioi were used to assess the extant genetic diversity and patterns of genetic structure, as well as to infer the demographic history of this species. We found considerable variability within the populations, even though there has been recent environmental disturbance in these habitats. The samples from the two areas where this species is found showed significantly different COI sequences and constitute two distinct populations [exact test of sample differentiation (P = 0.0008) and pairwise FST analyses (FST = 0.214, P E. acacioi greater than would have been expected, based on their cryptic behavior and reduced vagility. Mismatch analyses and neutrality tests revealed evidence of recent population expansion processes for both populations, possibly related to variations in the past distribution of this species.

Epiperipatus acacioi (Onychophora: Peripatidae) is an endemic species of the Atlantic rainforest in southeastern Brazil, with a restricted known distribution, found only in two nearby areas (Tripuí and Itacolomi). Mitochondrial gene COI sequences of 93 specimens collected across the known range of E. acacioi were used to assess the extant genetic diversity and patterns of genetic structure, as well as to infer the demographic history of this species. We found considerable variability within the populations, even though there has been recent environmental disturbance in these habitats. The samples from the two areas where this species is found showed significantly different COI sequences and constitute two distinct populations [exact test of sample differentiation (P = 0.0008) and pairwise FST analyses (FST = 0.214, P E. acacioi greater than would have been expected, based on their cryptic behavior and reduced vagility. Mismatch analyses and neutrality tests revealed evidence of recent population expansion processes for both populations, possibly related to variations in the past distribution of this species.

Anderson FE (2007). Population genetics of the carinate pillsnail, Euchemotrema hubrichti: genetic structure on a small spatial scale. Conserv. Genet. 8: 965-975.
http://dx.doi.org/10.1007/s10592-006-9250-6

Bohonak AJ (1999). Dispersal, gene flow, and population structure. Q. Rev. Biol. 74: 21-45.
http://dx.doi.org/10.1086/392950
PMid:10081813

Boore JL, Collins TM, Stanton D, Daehler LL, et al. (1995). Deducing the pattern of arthropod phylogeny from mitochondrial DNA rearrangements. Nature 376: 163-165.
http://dx.doi.org/10.1038/376163a0
PMid:7603565

Braband A, Cameron SL, Podsiadlowski L, Daniels SR, et al. (2010a). The mitochondrial genome of the onychophoran Opisthopatus cinctipes (Peripatopsidae) reflects the ancestral mitochondrial gene arrangement of Panarthropoda and Ecdysozoa. Mol. Phylogenet. Evol. 57: 285-292.
http://dx.doi.org/10.1016/j.ympev.2010.05.011
PMid:20493270

Braband A, Podsiadlowski L, Cameron SL, Daniels S, et al. (2010b). Extensive duplication events account for multiple control regions and pseudo-genes in the mitochondrial genome of the velvet worm Metaperipatus inae (Onychophora, Peripatopsidae). Mol. Phylogenet. Evol. 57: 293-300.
http://dx.doi.org/10.1016/j.ympev.2010.05.012
PMid:20510379

Campiglia S and Lavallard R (1973). Contribution a la biologie de Peripatus acacioi Marcus et Marcus. II. Variations du poids des animaux em fonction du sexe et du nombre des lobopodes. Bol. Zool. Biol. Mar. 30: 499-502.

Castelloe J and Templeton AR (1994). Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol. Phylogenet. Evol. 3: 102-113.
http://dx.doi.org/10.1006/mpev.1994.1013
PMid:8075830

Clement M, Posada D and Crandall KA (2000). TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9: 1657-1659.
http://dx.doi.org/10.1046/j.1365-294x.2000.01020.x
PMid:11050560

Conner JK and Hartl DL (2004). A Primer of Ecological Genetics. Sinauer Associates, Sunderland.

Crandall KA and Templeton AR (1993). Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134: 959-969.
PMid:8349118    PMCid:1205530

Ewing B and Green P (1998). Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8: 186-194.
PMid:9521922

Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185.
PMid:9521921

Fu YX (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925.
PMid:9335623    PMCid:1208208

Gordon D, Abajian C and Green P (1998). Consed: a graphical tool for sequence finishing. Genome Res. 8: 195-202.
PMid:9521923

Green P (1994). Phrap. Available at [http://www.genome.washington.edu/UWGC/analysistools/phrap.htm]. Accessed January 10, 2009.

Harpending HC (1994). Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum. Biol. 66: 591-600.
PMid:8088750

Irwin DE (2002). Phylogeographic breaks without geographic barriers to gene flow. Evolution 56: 2383-2394.
PMid:12583579

Lacorte GA, Oliveira IS and Fonseca CG (2011). Phylogenetic relationships among the Epiperipatus lineages (Onychophora: Peripatidae) from the Minas Gerais State, Brazil. Zootaxa 2755: 57-65.

Lavallard R and Campiglia S (1973). Contribution à la Biologie de Peripatus acacioi Marcus et Marcus I. Pourcentage des sexes et variations du nombre des lobopods dans un échantillonnage de plusieurs centaines d’individus. Bol. Zool. Biol. Mar. 30: 483-498.

Lavallard R and Campiglia S (1975a). Contribution à la Biologies de Peripatus acacioi Marcus et Marcus (Onychophore). IV. Elevage au laboratoir. Cien. Cult. 27: 549-556.

Lavallard R and Campiglia S (1975b). Contribution à la Biologie de Peripatus acaioi Marcus et Marcus (Onychophore). V. Etude des Naissances dans un Elevage de laboratoire. Zool. Anz. Jena. 195: 338-350.

Lewinsohn TM, Lucci FAV and Inacio PP (2005). Conservation of terrestrial invertebrates and their habitats in Brazil. Conserv. Biol. 19: 640-645.
http://dx.doi.org/10.1111/j.1523-1739.2005.00682.x

Librado P and Rozas J (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451-1452.
http://dx.doi.org/10.1093/bioinformatics/btp187
PMid:19346325

Marcus E and Marcus E (1955). A new Peripatus from Minas Gerais, Brazil. An. Acad. Bras. Cienc. 27: 189-193.

Miller MP (2005). Alleles in space (AIS): computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96: 722-724.
http://dx.doi.org/10.1093/jhered/esi119
PMid:16251514

Monge-Nájera J (1995). Phylogeny, biogeography and reproductive trends in the Onychophora. Zool. J. Linn. Soc. 114: 21-60.
http://dx.doi.org/10.1111/j.1096-3642.1995.tb00111.x

Moya O, Contreras-Diaz HG, Oromi P and Juan C (2004). Genetic structure, phylogeography and demography of two ground-beetle species endemic to the Tenerife laurel forest (Canary Islands). Mol. Ecol. 13: 3153-3167.
http://dx.doi.org/10.1111/j.1365-294x.2004.02316.x
PMid:15367128

New TR (1995). Onychophora in invertebrate conservation: priorities, practice and prospects. Zool. J. Linn. Soc. 114: 77-89.
http://dx.doi.org/10.1111/j.1096-3642.1995.tb00113.x

Newlands G and Ruhberg H (1978). Onychophora. In: Biogeography and Ecology of South Africa (Werger JMA, ed.). The Hague, Junk, 679-684.
http://dx.doi.org/10.1007/978-94-009-9951-0_17

Oliveira IS, Wieloch AH and Mayer G (2010). Revised taxonomy and redescription of two species of the Peripatidae (Onychophora) from Brazil: a step towards consistent terminology of morphological characters. Zootaxa 2493: 16-34.

Panchal M (2007). The automation of nested clade phylogeographic analysis. Bioinformatics 23: 509-510.
http://dx.doi.org/10.1093/bioinformatics/btl614
PMid:17142814

Pedralli G, Freitas VLO, Meyer ST, Teixeira MCB, et al. (1997). Levantamento florístico na Estação Ecológica do Tripuí, Ouro Preto, MG. Acta Bot. Bras. 11: 191-213.

Posada D, Crandall KA and Templeton AR (2000). GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol. 9: 487-488.
http://dx.doi.org/10.1046/j.1365-294x.2000.00887.x
PMid:10736051

Raymond M and Rousset F (1995). An exact test for population differentiation. Evolution 49: 1280-1283.
http://dx.doi.org/10.2307/2410454

Reed DH and Frankham R (2003). Correlation between fitness and genetic diversity. Conserv. Biol. 17: 230-237.
http://dx.doi.org/10.1046/j.1523-1739.2003.01236.x

Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. CHSL Press, New York.

Schneider S, Roessli D and Excoffier L (2000). ARLEQUIN Ver 3.01: A Software for Population Genetic Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland.

Strasser CA and Barber PH (2009). Limited genetic variation and structure in softshell clams (Mya arenaria) across their native and introduced range. Conserv. Genet. 10: 803-814.
http://dx.doi.org/10.1007/s10592-008-9641-y

Tait NN and Briscoe DA (1995). Genetic differentiation within New Zealand Onychophora and their relationships to the Australian fauna. Zool. J. Linn. Soc. 114: 103-113.
http://dx.doi.org/10.1111/j.1096-3642.1995.tb00115.x

Tajima F (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595.
PMid:2513255    PMCid:1203831

Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599.
http://dx.doi.org/10.1093/molbev/msm092
PMid:17488738

Templeton AR (2004). Statistical phylogeography: methods of evaluating and minimizing inference errors. Mol. Ecol. 13: 789-809.
http://dx.doi.org/10.1046/j.1365-294X.2003.02041.x
PMid:15012756