Research Article

Neuroprotective effects of NEP1-40 and fasudil on Nogo-A expression in neonatal rats with hypoxic-ischemic brain damage

Published: November 29, 2011
Genet. Mol. Res. 10 (4) : 2987-2995 DOI: https://doi.org/10.4238/2011.November.29.9
Cite this Article:
W.W. Zhu, X.L. Ma, A.L. Guo, H.Y. Zhao, H.H. Luo (2011). Neuroprotective effects of NEP1-40 and fasudil on Nogo-A expression in neonatal rats with hypoxic-ischemic brain damage. Genet. Mol. Res. 10(4): 2987-2995. https://doi.org/10.4238/2011.November.29.9
1,299 views

Abstract

The hypoxic-ischemic encephalopathy caused by peripartum asphyxia is a serious disease in newborn infants, and effective therapies need to be developed to reduce injury-related disorders. We evaluated the effects of NEP1-40 and fasudil on Nogo-A expression in neonatal hypoxic-ischemic brain damage (HIBD) rats. Seven-day-old Wistar rats were randomly divided into control, HIBD, NEP1-40, and fasudil groups. NEP1-40 and fasudil groups were injected intraperitoneally with these compounds. Rat brains at 6, 24, 72 h, and 7 days after HIBD were collected to determine histopathological damage and the expression levels of Nogo-A. Histopathological damage was reduced in NEP1-40 and fasudil groups compared with the untreated HIBD group. The expression of Nogo-A in the HIBD group was significantly higher than that in control, NEP1-40 and fasudil groups at the same times. Compared with the fasudil group, the expression levels of Nogo-A were significantly reduced in the NEP1-40 group. We conclude that NPE1-40 and fasudil have potential for neuroprotective effects in the neonatal rat HIBD model, mediated by inhibiting Nogo-A/ Rho pathways.

The hypoxic-ischemic encephalopathy caused by peripartum asphyxia is a serious disease in newborn infants, and effective therapies need to be developed to reduce injury-related disorders. We evaluated the effects of NEP1-40 and fasudil on Nogo-A expression in neonatal hypoxic-ischemic brain damage (HIBD) rats. Seven-day-old Wistar rats were randomly divided into control, HIBD, NEP1-40, and fasudil groups. NEP1-40 and fasudil groups were injected intraperitoneally with these compounds. Rat brains at 6, 24, 72 h, and 7 days after HIBD were collected to determine histopathological damage and the expression levels of Nogo-A. Histopathological damage was reduced in NEP1-40 and fasudil groups compared with the untreated HIBD group. The expression of Nogo-A in the HIBD group was significantly higher than that in control, NEP1-40 and fasudil groups at the same times. Compared with the fasudil group, the expression levels of Nogo-A were significantly reduced in the NEP1-40 group. We conclude that NPE1-40 and fasudil have potential for neuroprotective effects in the neonatal rat HIBD model, mediated by inhibiting Nogo-A/ Rho pathways.