Review

An overview of odorant-binding protein functions in insect peripheral olfactory reception

Published: December 08, 2011
Genet.Mol.Res. 10 (4) : 3056-3069 DOI: 10.4238/2011.December.8.2

Abstract

Insect olfactory perception involves many aspects of insect life, and can directly or indirectly evoke either individual or group behaviors. Insect olfactory receptors and odorant-binding proteins (OBPs) are considered to be crucial to insect-specific and -sensitive olfaction. Although the mechanisms of interaction between OBPs or OBP/ligand complex with olfactory receptors are still not well understood, it has been shown that many OBPs contribute to insect olfactory perception at various levels. Some of these are numerous and divergent members in OBP family; expression in the olfactory organ at high concentration; a variety of combinational patterns between different OBPs and ligands, but exclusive affinity for one OBP to specific binding ligands; complicated interactions between OBP/ligand complex and transmembrane proteins (olfactory receptors or sensory neuron membrane proteins). First, we review OBPs’ ligand-binding property based on OBP structural research and ligand-binding test; then, we review current progress around the points cited above to show the role of such proteins in insect olfactory signal transmission; finally, we discuss applications based on insect OBP research.

Insect olfactory perception involves many aspects of insect life, and can directly or indirectly evoke either individual or group behaviors. Insect olfactory receptors and odorant-binding proteins (OBPs) are considered to be crucial to insect-specific and -sensitive olfaction. Although the mechanisms of interaction between OBPs or OBP/ligand complex with olfactory receptors are still not well understood, it has been shown that many OBPs contribute to insect olfactory perception at various levels. Some of these are numerous and divergent members in OBP family; expression in the olfactory organ at high concentration; a variety of combinational patterns between different OBPs and ligands, but exclusive affinity for one OBP to specific binding ligands; complicated interactions between OBP/ligand complex and transmembrane proteins (olfactory receptors or sensory neuron membrane proteins). First, we review OBPs’ ligand-binding property based on OBP structural research and ligand-binding test; then, we review current progress around the points cited above to show the role of such proteins in insect olfactory signal transmission; finally, we discuss applications based on insect OBP research.

Beale MH, Birkett MA, Bruce TJ, Chamberlain K, et al. (2006). Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. Proc. Natl. Acad. Sci. U. S. A. 103: 10509-10513.
http://dx.doi.org/10.1073/pnas.0603998103
PMid:16798877    PMCid:1502488

Benton R, Sachse S, Michnick SW and Vosshall LB (2006). Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol. 4: e20.
http://dx.doi.org/10.1371/journal.pbio.0040020
PMid:16402857    PMCid:1334387

Benton R, Vannice KS and Vosshall LB (2007). An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450: 289-293.
http://dx.doi.org/10.1038/nature06328
PMid:17943085

Bette S, Breer H and Krieger J (2002). Probing a pheromone binding protein of the silkmoth Antheraea polyphemus by endogenous tryptophan fluorescence. Insect Biochem. Mol. Biol. 32: 241-246.
http://dx.doi.org/10.1016/S0965-1748(01)00171-0

Blomquist GJ and Vogt RG (2003). Insect Pheromone Biochemistry and Molecular Biology. In: The Biosynthesis and Detection of Pheromones and Plant Volatiles (Blomquist GJ and Vogt RG, eds.). Elsevier Academic Press, London, 3-18.

Buck L and Axel R (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175-187.
http://dx.doi.org/10.1016/0092-8674(91)90418-X

Campanacci V, Krieger J, Bette S, Sturgis JN, et al. (2001). Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J. Biol. Chem. 276: 20078-20084.
http://dx.doi.org/10.1074/jbc.M100713200
PMid:11274212

Clyne PJ, Warr CG, Freeman MR, Lessing D, et al. (1999). A novel family of divergent seven-transmembrane proteins: candidate odorant receptors in Drosophila. Neuron 22: 327-338.
http://dx.doi.org/10.1016/S0896-6273(00)81093-4

Damberger F, Nikonova L, Horst R, Peng G, et al. (2000). NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci. 9: 1038-1041.
http://dx.doi.org/10.1110/ps.9.5.1038
PMid:10850815    PMCid:2144629

Damberger FF, Ishida Y, Leal WS and Wuthrich K (2007). Structural basis of ligand binding and release in insect pheromone-binding proteins: NMR structure of Antheraea polyphemus PBP1 at pH 4.5. J. Mol. Biol. 373: 811-819.
http://dx.doi.org/10.1016/j.jmb.2007.07.078
PMid:17884092

Foret S and Maleszka R (2006). Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 16: 1404-1413.
http://dx.doi.org/10.1101/gr.5075706
PMid:17065610    PMCid:1626642

Francis F, Vandermoten S, Verheggen F, Lognay G, et al. (2005a). Is the (E)-farnesene only volatile terpenoid in aphids? J. Appl. Entomol. 129: 6-11.
http://dx.doi.org/10.1111/j.1439-0418.2005.00925.x

Francis F, Martin T, Lognay G and Haubruge E (2005b). Role of (E)-beta-farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera: Syrphidae). Eur. J. Entomol. 102: 431-436.

Friedrich RW and Korsching SI (1997). Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18: 737-752.
http://dx.doi.org/10.1016/S0896-6273(00)80314-1

Gao Q, Yuan B and Chess A (2000). Convergent projections of Drosophila olfactory neurons to specific glomeruli in the antennal lobe. Nat. Neurosci. 3: 780-785.
http://dx.doi.org/10.1038/75753
PMid:10816314

Gong DP, Zhang HJ, Zhao P, Xia QY, et al. (2009). The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics 10: 332.
http://dx.doi.org/10.1186/1471-2164-10-332
PMid:19624863    PMCid:2722677

Ha TS and Smith DP (2006). A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci. 26: 8727-8733.
http://dx.doi.org/10.1523/JNEUROSCI.0876-06.2006
PMid:16928861

Hallem EA, Nicole FA, Zwiebel LJ and Carlson JR (2004). Olfaction: mosquito receptor for human-sweat odorant. Nature 427: 212-213.
http://dx.doi.org/10.1038/427212a
PMid:14724626

Hekmat-Scafe DS, Scafe CR, McKinney AJ and Tanouye MA (2002). Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 12: 1357-1369.
http://dx.doi.org/10.1101/gr.239402
PMid:12213773    PMCid:186648

Hildebrand JG and Shepherd GM (1997). Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu. Rev. Neurosci. 20: 595-631.
http://dx.doi.org/10.1146/annurev.neuro.20.1.595
PMid:9056726

Honson N, Johnson MA, Oliver JE, Prestwich GD, et al. (2003). Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar. Chem. Senses 28: 479-489.
http://dx.doi.org/10.1093/chemse/28.6.479
PMid:12907585

Hooper AM, Dufour S, He X, Muck A, et al. (2009). High-throughput ESI-MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBP1, its pheromone components and some analogues. Chem. Commun. 5725-5727.
http://dx.doi.org/10.1039/b914294k
PMid:19774249

Horst R, Damberger F, Luginbühl P, Güntert P, et al. (2001). NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc. Natl. Acad. Sci. U. S. A. 98: 14374-14379.
http://dx.doi.org/10.1073/pnas.251532998
PMid:11724947    PMCid:64689

Jacobs SP, Liggins AP, Zhou JJ, Pickett JA, et al. (2005). OS-D-like genes and their expression in aphids (Hemiptera: Aphididae). Insect Mol. Biol. 14: 423-432.
http://dx.doi.org/10.1111/j.1365-2583.2005.00573.x
PMid:16033435

Jin X, Ha TS and Smith DP (2008). SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc. Natl. Acad. Sci. U. S. A.105: 10996-11001.
http://dx.doi.org/10.1073/pnas.0803309105
PMid:18653762    PMCid:2504837

Kaissling KE (1972). Kinetic Studies of Transduction in Olfactory Receptors of Bombyx Mori. In: Int. Symp. Olfaction and Taste IV (Schneider D, ed.). Wissenschaftl Verlagsges, Stuttgart, 207-213.

Kaissling KE (1998a). Flux detectors versus concentration detectors: two types of chemoreceptors. Chem. Senses 23: 99-111.
http://dx.doi.org/10.1093/chemse/23.1.99
PMid:9530975

Kaissling KE (1998b). Pheromone deactivation catalyzed by receptor molecules: a quantitative kinetic model. Chem. Senses 23: 385-395.
http://dx.doi.org/10.1093/chemse/23.4.385
PMid:9759524

Kaissling KE (2001). Olfactory perireceptor and receptor events in moths: a kinetic model. Chem. Senses 26: 125-150.
http://dx.doi.org/10.1093/chemse/26.2.125
PMid:11238244

Kaissling KE (2009). Olfactory perireceptor and receptor events in moths: a kinetic model revised. J. Comp Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195: 895-922.
http://dx.doi.org/10.1007/s00359-009-0461-4
PMid:19697043    PMCid:2749182

Kaissling KE and Thorson J (1980). Insect Olfactory Sensilla: Structure, Chemical and Electrical Aspects of the Functional Organization. In: Receptors for Transmitters, Hormones and Pheromones in Insects (Sattelle DB, Hall LM and Hildebrand JG, eds.). Elsevier, Amsterdam, 261-282.

Kasang G, von Proff L and Nicholls M (1988). Enzymatic conversion and degradation of sex pheromones in antennae of the male silkworm moth Antheraea polyphemus. Z. Naturforsch. C Biosci. 43c: 275-284.

Keller A and Vosshall LB (2007). Influence of odorant receptor repertoire on odor perception in humans and fruit flies. Proc. Natl. Acad. Sci. U. S. A. 104: 5614-5619.
http://dx.doi.org/10.1073/pnas.0605321104
PMid:17372215    PMCid:1838502

Kim MS, Repp A and Smith DP (1998). LUSH odorant-binding protein mediates chemosensory responses to alcohols in Drosophila melanogaster. Genetics 150: 711-721.
PMid:9755202    PMCid:1460366

Klein U (1987). Sensillum-lymph proteins from antennal olfactory hairs of the moth Antheraea polyphemus (Saturniidae). Insect Biochem. 17: 1193-1204.
http://dx.doi.org/10.1016/0020-1790(87)90093-X

Kruse SW, Zhao R, Smith DP and Jones DN (2003). Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat. Struct. Biol. 10: 694-700.
http://dx.doi.org/10.1038/nsb960
PMid:12881720

Kurtovic A, Widmer A and Dickson BJ (2007). A single class of olfactory neurons mediates behavioural responses to a Drosophila sex pheromone. Nature 446: 542-546.
http://dx.doi.org/10.1038/nature05672
PMid:17392786

Laissue PP and Vosshall LB (2008). The olfactory sensory map in Drosophila. Adv. Exp. Med. Biol. 628: 102-114.
http://dx.doi.org/10.1007/978-0-387-78261-4_7
PMid:18683641

Lartigue A, Gruez A, Spinelli S, Riviere S, et al. (2003). The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J. Biol. Chem. 278: 30213-30218.
http://dx.doi.org/10.1074/jbc.M304688200
PMid:12766173

Laughlin JD, Ha TS, Jones DN and Smith DP (2008). Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell 133: 1255-1265.
http://dx.doi.org/10.1016/j.cell.2008.04.046
PMid:18585358

Lautenschlager C, Leal WS and Clardy J (2005). Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein. Biochem. Biophys. Res. Commun. 335: 1044-1050.
http://dx.doi.org/10.1016/j.bbrc.2005.07.176
PMid:16111659

Lautenschlager C, Leal WS and Clardy J (2007). Bombyx mori pheromone-binding protein binding nonpheromone ligands: implications for pheromone recognition. Structure 15: 1148-1154.
http://dx.doi.org/10.1016/j.str.2007.07.013
PMid:17850754    PMCid:2072049

Lazar J, Greenwood DR, Rasmussen LE and Prestwich GD (2002). Molecular and functional characterization of an odorant binding protein of the Asian elephant, Elephas maximus: implications for the role of lipocalins in mammalian olfaction. Biochemistry 41: 11786-11794.
http://dx.doi.org/10.1021/bi0256734
PMid:12269821

Leal WS, Chen AM, Ishida Y, Chiang VP, et al. (2005). Kinetics and molecular properties of pheromone binding and release. Proc. Natl. Acad. Sci. U. S. A. 102: 5386-5391.
http://dx.doi.org/10.1073/pnas.0501447102
PMid:15784736    PMCid:555038

Leal WS, Barbosa RM, Xu W, Ishida Y, et al. (2008). Reverse and conventional chemical ecology approaches for the development of oviposition attractants for Culex mosquitoes. PLoS One 3: e3045.
http://dx.doi.org/10.1371/journal.pone.0003045
PMid:18725946    PMCid:2516325

Lee D, Damberger FF, Peng G, Horst R, et al. (2002). NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Lett. 531: 314-318.
http://dx.doi.org/10.1016/S0014-5793(02)03548-2

Leite NR, Krogh R, Xu W, Ishida Y, et al. (2009). Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive “Lid”. PLoS One 4: e8006.
http://dx.doi.org/10.1371/journal.pone.0008006
PMid:19956631    PMCid:2778553

Lescop E, Briand L, Pernollet JC, Van Heijenoort C, et al. (2001). Letter to the Editor: 1H, 13C and 15N chemical shift assignment of the honeybee odorant-binding protein ASP2. J. Biomol. NMR 21: 181-182.

Mao Y, Xu X, Xu W, Ishida Y, et al. (2010). Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proc. Natl. Acad. Sci. U. S. A. 107: 19102-19107.
http://dx.doi.org/10.1073/pnas.1012274107
PMid:20956299    PMCid:2973904

Matsuo T, Sugaya S, Yasukawa J, Aigaki T, et al. (2007). Odorant-binding proteins OBP57d and OBP57e affect taste perception and host-plant preference in Drosophila sechellia. PLoS Biol. 5: e118.
http://dx.doi.org/10.1371/journal.pbio.0050118
PMid:17456006    PMCid:1854911

Mohanty S, Zubkov S and Gronenborn AM (2004). The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone-binding proteins. J. Mol. Biol. 337: 443-451.
http://dx.doi.org/10.1016/j.jmb.2004.01.009
PMid:15003458

Mohl C, Breer H and Krieger J (2002). Species-specific pheromonal compounds induce distinct conformational changes of pheromone binding protein subtypes from Antheraea polyphemus. Invert. Neurosci. 4: 165-174.
http://dx.doi.org/10.1007/s10158-002-0018-5
PMid:12488967

Mori K, Nagao H and Yoshihara Y (1999). The olfactory bulb: coding and processing of odor molecule information. Science 286: 711-715.
http://dx.doi.org/10.1126/science.286.5440.711
PMid:10531048

Neuhaus EM, Gisselmann G, Zhang W, Dooley R, et al. (2005). Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat. Neurosci. 8: 15-17.
http://dx.doi.org/10.1038/nn1371
PMid:15592462

Novotny V, Basset Y, Miller SE, Weiblen GD, et al. (2002). Low host specificity of herbivorous insects in a tropical forest. Nature 416: 841-844.
http://dx.doi.org/10.1038/416841a
PMid:11976681

Pelletier J and Leal WS (2009). Genome analysis and expression patterns of odorant-binding proteins from the Southern House mosquito Culex pipiens quinquefasciatus. PLoS One 4: e6237.
http://dx.doi.org/10.1371/journal.pone.0006237
PMid:19606229    PMCid:2707629

Pelosi P, Pisanelli AM, Baldaccini NE and Gagliardo A (1981). Binding of [3H]-2-isobutyl-3-methoxypyrazine to cow olfactory mucosa. Chem. Senses 6: 77-85.
http://dx.doi.org/10.1093/chemse/6.2.77

Pelosi P, Baldaccini NE and Pisanelli AM (1982). Identification of a specific olfactory receptor for 2-isobutyl-3- methoxypyrazine. Biochem. J. 201: 245-248.
PMid:7082286    PMCid:1163633

Pelosi P, Zhou JJ, Ban L and Calvello M (2006). Soluble proteins in insect chemical communication. Cell. Mol. Life Sci. 63: 1658-1676.
http://dx.doi.org/10.1007/s00018-005-5607-0
PMid:16786224
Pesenti ME, Spinelli S, Bezirard V, Briand L, et al. (2008). Structural basis of the honey bee PBP pheromone and pH-induced conformational change. J. Mol. Biol. 380: 158-169.
http://dx.doi.org/10.1016/j.jmb.2008.04.048
PMid:18508083

Pesenti ME, Spinelli S, Bezirard V, Briand L, et al. (2009). Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. J. Mol. Biol. 390: 981-990.
http://dx.doi.org/10.1016/j.jmb.2009.05.067
PMid:19481550

Pophof B (2002). Moth pheromone binding proteins contribute to the excitation of olfactory receptor cells. Naturwissenschaften 89: 515-518.
http://dx.doi.org/10.1007/s00114-002-0364-5
PMid:12451455

Pophof B (2004). Pheromone-binding proteins contribute to the activation of olfactory receptor neurons in the silkmoths Antheraea polyphemus and Bombyx mori. Chem. Senses 29: 117-125.
http://dx.doi.org/10.1093/chemse/bjh012
PMid:14977808

Qiao H, Tuccori E, He X, Gazzano A, et al. (2009). Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochem. Mol. Biol. 39: 414-419.
http://dx.doi.org/10.1016/j.ibmb.2009.03.004
PMid:19328854

Sandler BH, Nikonova L, Leal WS and Clardy J (2000). Sexual attraction in the silkworm moth: structure of the pheromone-binding-protein-bombykol complex. Chem. Biol. 7: 143-151.
http://dx.doi.org/10.1016/S1074-5521(00)00078-8

Sato K, Pellegrino M, Nakagawa T, Nakagawa T, et al. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature 452: 1002-1006.
http://dx.doi.org/10.1038/nature06850
PMid:18408712

Silbering AF and Benton R (2010). Ionotropic and metabotropic mechanisms in chemoreception: “chance or design”? EMBO Rep. 11: 173-179.
http://dx.doi.org/10.1038/embor.2010.8
PMid:20111052    PMCid:2838705

Strausfeld NJ and Hildebrand JG (1999). Olfactory systems: common design, uncommon origins? Curr. Opin. Neurobiol. 9: 634-639.
http://dx.doi.org/10.1016/S0959-4388(99)00019-7

Tegoni M, Campanacci V and Cambillau C (2004). Structural aspects of sexual attraction and chemical communication in insects. Trends Biochem. Sci. 29: 257-264.
http://dx.doi.org/10.1016/j.tibs.2004.03.003
PMid:15130562

Thode AB, Kruse SW, Nix JC and Jones DN (2008). The role of multiple hydrogen-bonding groups in specific alcohol binding sites in proteins: insights from structural studies of LUSH. J. Mol. Biol. 376: 1360-1376.
http://dx.doi.org/10.1016/j.jmb.2007.12.063
PMid:18234222    PMCid:2293277

Uchida N, Takahashi YK, Tanifuji M and Mori K (2000). Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat. Neurosci. 3: 1035-1043.
http://dx.doi.org/10.1038/79857
PMid:11017177

Van den Berg MJ and Ziegelberger G (1991). On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus. J. Insect Physiol. 37: 79-85.
http://dx.doi.org/10.1016/0022-1910(91)90022-R

Vogt RG (2005). Molecular Basis of Pheromone Detection in Insects. In: Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology (Gilbert L, Latro G and Gill S, eds.). Elsevier, London, 753-804.

Vogt RG and Riddiford LM (1981). Pheromone binding and inactivation by moth antennae. Nature 293: 161-163.
http://dx.doi.org/10.1038/293161a0
PMid:18074618

Vogt RG and Riddiford LM (1986). Pheromone Reception: A Kinetic Equilibrium. In: Mechanisms in Insect Olfaction (Payne T, Birch M and Kennedy C, eds.). Clarendon Press, Oxford, 201-208.

Vosshall LB, Amrein H, Morozov PS, Rzhetsky A, et al. (1999). A spatial map of olfactory receptor expression in the Drosophila antenna. Cell 96: 725-736.
http://dx.doi.org/10.1016/S0092-8674(00)80582-6

Vosshall LB, Wong AM and Axel R (2000). An olfactory sensory map in the fly brain. Cell 102: 147-159.
http://dx.doi.org/10.1016/S0092-8674(00)00021-0

Wang P, Lyman RF, Shabalina SA, Mackay TFC, et al. (2007). Association of polymorphisms in odorant-binding protein genes with variation in olfactory response to benzaldehyde in Drosophila. Genetics 177: 1655-1665.
http://dx.doi.org/10.1534/genetics.107.079731
PMid:17720903    PMCid:2147940

Wang P, Lyman RF, Mackay TF and Anholt RR (2010). Natural variation in odorant recognition among odorant-binding proteins in Drosophila melanogaster. Genetics 184: 759-767.
http://dx.doi.org/10.1534/genetics.109.113340
PMid:20026676    PMCid:2845343

Wetzel CH, Behrendt HJ, Gisselmann G, Stortkuhl KF, et al. (2001). Functional expression and characterization of a Drosophila odorant receptor in a heterologous cell system. Proc. Natl. Acad. Sci. U. S. A. 98: 9377-9380.
http://dx.doi.org/10.1073/pnas.151103998
PMid:11481494    PMCid:55428

Wicher D, Schafer R, Bauernfeind R, Stensmyr MC, et al. (2008). Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature 452: 1007-1011.
http://dx.doi.org/10.1038/nature06861
PMid:18408711

Wogulis M, Morgan T, Ishida Y, Leal WS, et al. (2006). The crystal structure of an odorant binding protein from Anopheles gambiae: evidence for a common ligand release mechanism. Biochem. Biophys. Res. Commun. 339: 157-164.
http://dx.doi.org/10.1016/j.bbrc.2005.10.191
PMid:16300742

Wojtasek H and Leal WS (1999). Conformational change in the pheromone-binding protein from Bombyx mori induced by pH and by interaction with membranes. J. Biol. Chem. 274: 30950-30956.
http://dx.doi.org/10.1074/jbc.274.43.30950
PMid:10521490

Xu P, Atkinson R, Jones DN and Smith DP (2005). Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45: 193-200.
http://dx.doi.org/10.1016/j.neuron.2004.12.031
PMid:15664171

Xu PX, Zwiebel LJ and Smith DP (2003). Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. 12: 549-560.
http://dx.doi.org/10.1046/j.1365-2583.2003.00440.x
PMid:14986916

Xu W and Leal WS (2008). Molecular switches for pheromone release from a moth pheromone-binding protein. Biochem. Biophys. Res. Commun. 372: 559-564.
http://dx.doi.org/10.1016/j.bbrc.2008.05.087
PMid:18503757

Xu X, Xu W, Rayo J, Ishida Y, et al. (2010). NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection. Biochemistry 49: 1469-1476.
http://dx.doi.org/10.1021/bi9020132
PMid:20088570    PMCid:2822879

Zhou JJ, Huang W, Zhang GA, Pickett JA, et al. (2004a). “Plus-C” odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene 327: 117-129.
http://dx.doi.org/10.1016/j.gene.2003.11.007
PMid:14960367

Zhou JJ, Zhang GA, Huang W, Birkett MA, et al. (2004b). Revisiting the odorant-binding protein LUSH of Drosophila melanogaster: evidence for odour recognition and discrimination. FEBS Lett. 558: 23-26.
http://dx.doi.org/10.1016/S0014-5793(03)01521-7

Zhou JJ, He XL, Pickett JA and Field LM (2008). Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol. Biol. 17: 147-163.
http://dx.doi.org/10.1111/j.1365-2583.2007.00789.x
PMid:18353104

Zhou JJ, Robertson G, He X, Dufour S, et al. (2009). Characterisation of Bombyx mori Odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J. Mol. Biol. 389: 529-545.
http://dx.doi.org/10.1016/j.jmb.2009.04.015
PMid:19371749

Zhou JJ, Field LM and He XL (2010a). Insect odorant-binding proteins: do they offer an alternative pest control strategy? Outlooks Pest Manag. 21: 31-34.
http://dx.doi.org/10.1564/21feb08

Zhou JJ, Vieira FG, He XL, Smadja C, et al. (2010b). Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol. Biol. 19 (Suppl 2): 113-122.
http://dx.doi.org/10.1111/j.1365-2583.2009.00919.x
PMid:20482644

Zubkov S, Gronenborn AM, Byeon IJ and Mohanty S (2005). Structural consequences of the pH-induced conformational switch in A. polyphemus pheromone-binding protein: mechanisms of ligand release. J. Mol. Biol. 354: 1081-1090.
http://dx.doi.org/10.1016/j.jmb.2005.10.015
PMid:16289114