Research Article

Genetic diversity analysis of Bt cotton genotypes in Pakistan using simple sequence repeat markers

Published: March 14, 2012
Genet. Mol. Res. 11 (1) : 597-605 DOI: https://doi.org/10.4238/2012.March.14.3
Cite this Article:
I. Ullah, A. Iram, M.Z. Iqbal, M. Nawaz, S.M. Hasni, S. Jamil (2012). Genetic diversity analysis of Bt cotton genotypes in Pakistan using simple sequence repeat markers. Genet. Mol. Res. 11(1): 597-605. https://doi.org/10.4238/2012.March.14.3
3,033 views

Abstract

The popularity of genetically modified insect resistant (Bt) cotton has promoted large scale monocultures, which is thought to worsen the problem of crop genetic homogeneity. Information on genetic diversity among Bt cotton varieties is lacking. We evaluated genetic divergence among 19 Bt cotton genotypes using simple sequence repeat (SSR) markers. Thirty-seven of 104 surveyed primers were found informative. Fifty-two primers selected on the basis of reported intra-hirsutum polymorphism in a cotton marker database showed a high degree of polymorphism, 56% compared to 13% for randomly selected primers. A total of 177 loci were amplified, with an average of 1.57 loci per primer, generating 38 markers. The amplicons ranged in size from 98 to 256 bp. The genetic similarities among the 19 genotypes ranged from 0.902 to 0.982, with an average of 0.947, revealing a lack of diversity. Similarities among genotypes from public sector organizations were higher than genotypes developed by private companies. Hybrids were found to be more distant compared to commercial cultivars and advanced breeding lines. Cluster analysis grouped the 19 Bt cotton genotypes into three major clusters and two independent entries. Cultivars IR-3701, Ali Akbar-802 and advanced breeding line VH-259 grouped in subcluster B2, with very narrow genetic distances despite dissimilar parentage. We found a very high level of similarity among Pakistani-bred Bt cotton varieties, which means that genetically diverse recurrent parents should be included to enhance genetic diversity. The intra-hirsutum polymorphic SSRs were found to be highly informative for molecular genetic diversity studies in these cotton varieties.

The popularity of genetically modified insect resistant (Bt) cotton has promoted large scale monocultures, which is thought to worsen the problem of crop genetic homogeneity. Information on genetic diversity among Bt cotton varieties is lacking. We evaluated genetic divergence among 19 Bt cotton genotypes using simple sequence repeat (SSR) markers. Thirty-seven of 104 surveyed primers were found informative. Fifty-two primers selected on the basis of reported intra-hirsutum polymorphism in a cotton marker database showed a high degree of polymorphism, 56% compared to 13% for randomly selected primers. A total of 177 loci were amplified, with an average of 1.57 loci per primer, generating 38 markers. The amplicons ranged in size from 98 to 256 bp. The genetic similarities among the 19 genotypes ranged from 0.902 to 0.982, with an average of 0.947, revealing a lack of diversity. Similarities among genotypes from public sector organizations were higher than genotypes developed by private companies. Hybrids were found to be more distant compared to commercial cultivars and advanced breeding lines. Cluster analysis grouped the 19 Bt cotton genotypes into three major clusters and two independent entries. Cultivars IR-3701, Ali Akbar-802 and advanced breeding line VH-259 grouped in subcluster B2, with very narrow genetic distances despite dissimilar parentage. We found a very high level of similarity among Pakistani-bred Bt cotton varieties, which means that genetically diverse recurrent parents should be included to enhance genetic diversity. The intra-hirsutum polymorphic SSRs were found to be highly informative for molecular genetic diversity studies in these cotton varieties.