Research Article

Microsporogenesis in Brachiaria brizantha (Poaceae) as a selection tool for breeding

Published: May 15, 2012
Genet. Mol. Res. 11 (2) : 1309-1318 DOI: https://doi.org/10.4238/2012.May.15.1
Cite this Article:
M.S. Pagliarini, C.B. Valle, E.M. Santos, D.V. Mendes, Z.H. Bernardo, A.B. Mendes-Bonato, N. Silva, V. Calisto (2012). Microsporogenesis in Brachiaria brizantha (Poaceae) as a selection tool for breeding. Genet. Mol. Res. 11(2): 1309-1318. https://doi.org/10.4238/2012.May.15.1
2,524 views

Abstract

The genus Brachiaria comprises more than 100 species and is the single most important genus of forage grass in the tropics. Brachiaria brizantha, widely used in Brazilian pastures for beef and dairy production, is native to tropical Africa. As a subsidy to the breeding program underway in Brazil, cytological studies were employed to determine the chromosome number and to evaluate microsporogenesis in 46 accessions of this species available at Embrapa Beef Cattle (Brazil). Thirty-four accessions presented 2n = 36; seven had 2n = 45, and five had 2n = 54 chromosomes. Based on the higher level of chromosome association observed in diakinesis, in tetra-, penta-, and hexavalents, respectively, it was concluded that they are derived from x = 9; consequently, these accessions are tetra- (2n = 4x = 36), penta- (2n = 5x = 45), and hexaploids (2n = 6x = 54). The most common meiotic abnormalities were irregular chromosome segregation due to polyploidy. Chromosome stickiness, abnormal cytokinesis, non-congressed bivalents in metaphase I and chromosomes in metaphase II, and chromosome elimination were recorded at varying frequencies in several accessions. The mean percentage of meiotic abnormalities ranged from 0.36 to 95.76%. All the abnormalities had the potential to affect pollen viability by generating unbalanced gametes. Among the accessions, only the tetraploid ones with less than 40% of abnormalities are suitable as pollen donors in intra- and interspecific crosses. Currently, accessions with a high level of ploidy (5 and 6n) cannot be used as male genitors in crosses because of the lack of sexual female genitors with the same levels of ploidy.

The genus Brachiaria comprises more than 100 species and is the single most important genus of forage grass in the tropics. Brachiaria brizantha, widely used in Brazilian pastures for beef and dairy production, is native to tropical Africa. As a subsidy to the breeding program underway in Brazil, cytological studies were employed to determine the chromosome number and to evaluate microsporogenesis in 46 accessions of this species available at Embrapa Beef Cattle (Brazil). Thirty-four accessions presented 2n = 36; seven had 2n = 45, and five had 2n = 54 chromosomes. Based on the higher level of chromosome association observed in diakinesis, in tetra-, penta-, and hexavalents, respectively, it was concluded that they are derived from x = 9; consequently, these accessions are tetra- (2n = 4x = 36), penta- (2n = 5x = 45), and hexaploids (2n = 6x = 54). The most common meiotic abnormalities were irregular chromosome segregation due to polyploidy. Chromosome stickiness, abnormal cytokinesis, non-congressed bivalents in metaphase I and chromosomes in metaphase II, and chromosome elimination were recorded at varying frequencies in several accessions. The mean percentage of meiotic abnormalities ranged from 0.36 to 95.76%. All the abnormalities had the potential to affect pollen viability by generating unbalanced gametes. Among the accessions, only the tetraploid ones with less than 40% of abnormalities are suitable as pollen donors in intra- and interspecific crosses. Currently, accessions with a high level of ploidy (5 and 6n) cannot be used as male genitors in crosses because of the lack of sexual female genitors with the same levels of ploidy.