Research Article

Application of functional genomic information to develop efficient EST-SSRs for the chicken (Gallus gallus)

Published: May 21, 2012
Genet. Mol. Res. 11 (2) : 1558-1574 DOI: https://doi.org/10.4238/2012.May.21.12
Cite this Article:
M.R. Bakhtiarizadeh, B. Arefnejad, E. Ebrahimie, M. Ebrahimi (2012). Application of functional genomic information to develop efficient EST-SSRs for the chicken (Gallus gallus). Genet. Mol. Res. 11(2): 1558-1574. https://doi.org/10.4238/2012.May.21.12
1,938 views

Abstract

Many years of domestication and breeding have given rise to the wide range of chicken breeds that exist today; however, an increasing number of local chicken breeds are under threat of extinction. A comprehensive characterization of chicken markers (especially type I markers) is needed to monitor and conserve genetic diversity in this species. The explosion of genomics and functional genomics information in recent years has opened new possibilities for the generation of molecular markers. We analyzed a large number of expressed sequence tags (ESTs) to test the possibility of using EST-derived microsatellite markers for investigating the Gallus gallus genome. Chromosomal locations for the majority of these SSRs were predicted. Of the 31,576 unigenes assembled from the 544,150 redundant EST sequences, 1757 SSR markers were discovered on 1544 ESTs, using the SSRLocator software, with an average density of 28.7 kb per SSR. The dimer motifs were the most frequent (46.38%), followed by trimeric (38.58%), tetrameric (10.19%), pentameric (4.5%), and hexameric (G. gallus UniGene sequences could be exploited for development of EST-SSRs, indicating a good source for molecular markers as well as for functional genome analysis.

Many years of domestication and breeding have given rise to the wide range of chicken breeds that exist today; however, an increasing number of local chicken breeds are under threat of extinction. A comprehensive characterization of chicken markers (especially type I markers) is needed to monitor and conserve genetic diversity in this species. The explosion of genomics and functional genomics information in recent years has opened new possibilities for the generation of molecular markers. We analyzed a large number of expressed sequence tags (ESTs) to test the possibility of using EST-derived microsatellite markers for investigating the Gallus gallus genome. Chromosomal locations for the majority of these SSRs were predicted. Of the 31,576 unigenes assembled from the 544,150 redundant EST sequences, 1757 SSR markers were discovered on 1544 ESTs, using the SSRLocator software, with an average density of 28.7 kb per SSR. The dimer motifs were the most frequent (46.38%), followed by trimeric (38.58%), tetrameric (10.19%), pentameric (4.5%), and hexameric (G. gallus UniGene sequences could be exploited for development of EST-SSRs, indicating a good source for molecular markers as well as for functional genome analysis.