Research Article

Diversity among isolates of cowpea severe mosaic virus infecting cowpeas in northeastern Brazil

Published: September 03, 2012
Genet. Mol. Res. 11 (3) : 3146-3153 DOI: https://doi.org/10.4238/2012.September.3.3
Cite this Article:
E.F.M. Abreu, M.L.P. Tinoco, E.C. Andrade, F.J.L. Aragão (2012). Diversity among isolates of cowpea severe mosaic virus infecting cowpeas in northeastern Brazil. Genet. Mol. Res. 11(3): 3146-3153. https://doi.org/10.4238/2012.September.3.3
2,807 views

Abstract

Eleven isolates of cowpea severe mosaic virus (CPSMV), a member of the genus Comovirus, were selected from 50 samples collected of nine cowpea fields in Northeastern Brazil (Piauí, Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia, and Distrito Federal) and partially sequenced. The RNA1 partial sequence, corresponding to the helicase, viral genome-linked protein, picornain 3C-like protease, and the RNA-directed RNA polymerase genes from CPSMV, had high identity among isolates, varying from 98 to 100%. No evidence was found for intermolecular or intramolecular recombination. Phylogenetic analysis confirmed that the Brazilian CPSMV isolates are substantially different from the CPSMV strain USA. Despite the low variability found among Brazilian CPSMV isolates, there were notable differences in the symptomatology of infected cowpea plants, ranging from mild to moderate. Previous reports have demonstrated an association between CPSMV symptom determinants and helicase. However, we found no correlation between the helicase mutations and symptoms caused by CPSMV. Nevertheless, all isolates with mutation R to K in the protease provoked severe symptoms. This type of information can provide a foundation for the development of strategies to produce durable resistant cowpea lines. It is crucial for strategies based on DNA sequence-dependent technologies, such as inhibition with RNAi.

Eleven isolates of cowpea severe mosaic virus (CPSMV), a member of the genus Comovirus, were selected from 50 samples collected of nine cowpea fields in Northeastern Brazil (Piauí, Ceará, Rio Grande do Norte, Paraíba, Pernambuco, Alagoas, Sergipe, Bahia, and Distrito Federal) and partially sequenced. The RNA1 partial sequence, corresponding to the helicase, viral genome-linked protein, picornain 3C-like protease, and the RNA-directed RNA polymerase genes from CPSMV, had high identity among isolates, varying from 98 to 100%. No evidence was found for intermolecular or intramolecular recombination. Phylogenetic analysis confirmed that the Brazilian CPSMV isolates are substantially different from the CPSMV strain USA. Despite the low variability found among Brazilian CPSMV isolates, there were notable differences in the symptomatology of infected cowpea plants, ranging from mild to moderate. Previous reports have demonstrated an association between CPSMV symptom determinants and helicase. However, we found no correlation between the helicase mutations and symptoms caused by CPSMV. Nevertheless, all isolates with mutation R to K in the protease provoked severe symptoms. This type of information can provide a foundation for the development of strategies to produce durable resistant cowpea lines. It is crucial for strategies based on DNA sequence-dependent technologies, such as inhibition with RNAi.