Research Article

Evaluation of cellulolytic activity in insect digestive fluids

Published: July 15, 2013
Genet. Mol. Res. 12 (3) : 2432-2441 DOI: https://doi.org/10.4238/2013.January.4.11
Cite this Article:
L.J. Su, H.F. Zhang, X.M. Yin, M. Chen, F.Q. Wang, H. Xie, G.Z. Zhang, A.D. Song (2013). Evaluation of cellulolytic activity in insect digestive fluids. Genet. Mol. Res. 12(3): 2432-2441. https://doi.org/10.4238/2013.January.4.11
2,339 views

Abstract

Efficient and low-cost cellulolytic enzymes are urgently needed to degrade recalcitrant plant biomass during the industrial production of lignocellulosic biofuels. Here, the cellulolytic activities in the gut fluids of 54 insect species that belong to 7 different taxonomic orders were determined using 2 different substrates, carboxymethyl cellulose (CMC) (approximating endo-β-1,4-glucanase) and filter paper (FP) (total cellulolytic activities). The use of CMC as the substrate in the zymogram analysis resulted in the detection of distinct cellulolytic protein bands. The cellulolytic activities in the digestive system of all the collected samples were detected using cellulolytic activity analysis. The highest CMC gut fluid activities were found in Coleoptera and Orthoptera, while FP analysis indicated that higher gut fluid activities were found in several species of Coleoptera and Lepidoptera. In most cases, gut fluid activities were higher with CMC than with FP substrate, except for individual Lepidoptera species. Our data indicate that the origin of cellulolytic enzymes probably reflects the phylogenetic relationship and feeding strategies of different insects.

Efficient and low-cost cellulolytic enzymes are urgently needed to degrade recalcitrant plant biomass during the industrial production of lignocellulosic biofuels. Here, the cellulolytic activities in the gut fluids of 54 insect species that belong to 7 different taxonomic orders were determined using 2 different substrates, carboxymethyl cellulose (CMC) (approximating endo-β-1,4-glucanase) and filter paper (FP) (total cellulolytic activities). The use of CMC as the substrate in the zymogram analysis resulted in the detection of distinct cellulolytic protein bands. The cellulolytic activities in the digestive system of all the collected samples were detected using cellulolytic activity analysis. The highest CMC gut fluid activities were found in Coleoptera and Orthoptera, while FP analysis indicated that higher gut fluid activities were found in several species of Coleoptera and Lepidoptera. In most cases, gut fluid activities were higher with CMC than with FP substrate, except for individual Lepidoptera species. Our data indicate that the origin of cellulolytic enzymes probably reflects the phylogenetic relationship and feeding strategies of different insects.