Methodology

Isolation and analysis of α-expansin genes in the tree Anthocephalus chinensis (Rubiaceae)

Published: April 10, 2013
Genet. Mol. Res. 12 (2) : 1061-1073 DOI: https://doi.org/10.4238/2013.April.10.2
Cite this Article:
K.X. Ouyang, M.Q. Liu, R.Q. Pian, S.S. Liu, X.Y. Chen (2013). Isolation and analysis of α-expansin genes in the tree Anthocephalus chinensis (Rubiaceae). Genet. Mol. Res. 12(2): 1061-1073. https://doi.org/10.4238/2013.April.10.2
3,402 views

Abstract

Expansins are cell wall-associated proteins that induce wall extension and relax stress by disrupting noncovalent bonds between cellulose microfibrils and cross-linking glycan chains, thereby promoting wall creep. Anthocephalus chinensis is a very fast-growing economically important tree found mainly in South Asia. Sixteen cDNAs, designated AcEXPA1 to AcEXPA16 (GenBank accession Nos. FJ417847, JF922686-JF922700) with corresponding genomic DNA sequences (GenBank accession Nos. GQ228823, JF922701-JF922715), were isolated by amplifying conserved domain binding with genomic walking and RACE techniques from four differential growth tissues in A. chinensis. These α-expansin homologues were highly conserved in size and sequence; they had the same sequence structures as an N-terminal signal peptide, three exons and two introns. Their amino acid alignment showed that A. chinensis expansin genes are divided into three subgroups: A, B and C. This study is the first report on expansin genes from A. chinensis. It will be used for a tissue-specific expression model and for studying the relationship between expansin genes, growth rate and wood quality of the xylem in this fast-growing tree.

Expansins are cell wall-associated proteins that induce wall extension and relax stress by disrupting noncovalent bonds between cellulose microfibrils and cross-linking glycan chains, thereby promoting wall creep. Anthocephalus chinensis is a very fast-growing economically important tree found mainly in South Asia. Sixteen cDNAs, designated AcEXPA1 to AcEXPA16 (GenBank accession Nos. FJ417847, JF922686-JF922700) with corresponding genomic DNA sequences (GenBank accession Nos. GQ228823, JF922701-JF922715), were isolated by amplifying conserved domain binding with genomic walking and RACE techniques from four differential growth tissues in A. chinensis. These α-expansin homologues were highly conserved in size and sequence; they had the same sequence structures as an N-terminal signal peptide, three exons and two introns. Their amino acid alignment showed that A. chinensis expansin genes are divided into three subgroups: A, B and C. This study is the first report on expansin genes from A. chinensis. It will be used for a tissue-specific expression model and for studying the relationship between expansin genes, growth rate and wood quality of the xylem in this fast-growing tree.