Research Article

Evaluation of genetic diversity in fig accessions by using microsatellite markers

Published: April 25, 2013
Genet. Mol. Res. 12 (2) : 1383-1391 DOI: https://doi.org/10.4238/2013.April.25.9
Cite this Article:
A.D.Bdo Val, C.S. Souza, E.A. Ferreira, S.M.L. Salgado, M. Pasqual, G.M.A. Cançado (2013). Evaluation of genetic diversity in fig accessions by using microsatellite markers. Genet. Mol. Res. 12(2): 1383-1391. https://doi.org/10.4238/2013.April.25.9
2,142 views

Abstract

Fig (Ficus carica L.) is a fruit of great importance worldwide. Its propagation is carried out with stem cuttings, a procedure that favors the occurrence of synonymy among specimens. Thus, molecular markers have become an important tool for studies of DNA fingerprinting, germplasm characterization, and genetic diversity evaluation in this plant species. The aim of this study was the analysis of genetic diversity among accessions of fig and the detection of synonyms among samples using molecular markers. Five microsatellite markers previously reported as polymorphic to fig were used to characterize 11 fig cultivars maintained in the germplasm bank located in Lavras, Minas Gerais. A total of 21 polymorphic DNA fragments were amplified, with an average of 4.2 alleles per locus. The average allelic diversity and polymorphic information content were 0.6300 and 0.5644, respectively, whereas the total value for the probability of identity was 1.45 x 10-4. The study allowed the identification of 10 genotypes and 2 synonymous individuals. The principal coordinate analysis showed no defined clusters despite the formation of groups according to geographical origin. However, neighbor-joining analysis identified the same case of synonymy detected using principal coordinate analysis. The data also indicated that the fig cultivars analyzed constitute a population of individuals with high genetic diversity and a broad range of genetic variation.

Fig (Ficus carica L.) is a fruit of great importance worldwide. Its propagation is carried out with stem cuttings, a procedure that favors the occurrence of synonymy among specimens. Thus, molecular markers have become an important tool for studies of DNA fingerprinting, germplasm characterization, and genetic diversity evaluation in this plant species. The aim of this study was the analysis of genetic diversity among accessions of fig and the detection of synonyms among samples using molecular markers. Five microsatellite markers previously reported as polymorphic to fig were used to characterize 11 fig cultivars maintained in the germplasm bank located in Lavras, Minas Gerais. A total of 21 polymorphic DNA fragments were amplified, with an average of 4.2 alleles per locus. The average allelic diversity and polymorphic information content were 0.6300 and 0.5644, respectively, whereas the total value for the probability of identity was 1.45 x 10-4. The study allowed the identification of 10 genotypes and 2 synonymous individuals. The principal coordinate analysis showed no defined clusters despite the formation of groups according to geographical origin. However, neighbor-joining analysis identified the same case of synonymy detected using principal coordinate analysis. The data also indicated that the fig cultivars analyzed constitute a population of individuals with high genetic diversity and a broad range of genetic variation.