Research Article

Cloning and sequence analysis of an actin gene in aloe

Published: July 04, 2014
Genet. Mol. Res. 13 (3) : 4949-4955 DOI: https://doi.org/10.4238/2014.July.4.9
Cite this Article:
(2014). Cloning and sequence analysis of an actin gene in aloe. Genet. Mol. Res. 13(3): gmr3490. https://doi.org/10.4238/2014.July.4.9
1,218 views

Abstract

Aloe (Aloe spp), containing abundant polysaccharides and numerous bioactive ingredients, has remarkable medical, ornamental, calleidic, and edible values. In the present study, the total RNA was extracted from aloe leaf tissue. The isolated high-quality RNA was further used to clone actin gene by using reverse transcription-polymerase chain reaction (RT-PCR). The result of sequence analysis for the amplified fragment revealed that the cloned actin gene was 1012 bp in length (GenBank accession No. KC751541.1) and contained a 924-bp coding region and encoded a protein consisting of 307 amino acids. Homologous alignment showed that it shared over 80 and 96% identity with the nucleotide and amino acid sequences of actin from other plants, respectively. In addition, the cloned gene was used for phylogenetic analyses based on the deduced amino acid sequences, and the results suggested that the actin gene is highly conserved in evolution. The findings of this study will be useful for investigating the expression patterns of other genes in Aloe.

Aloe (Aloe spp), containing abundant polysaccharides and numerous bioactive ingredients, has remarkable medical, ornamental, calleidic, and edible values. In the present study, the total RNA was extracted from aloe leaf tissue. The isolated high-quality RNA was further used to clone actin gene by using reverse transcription-polymerase chain reaction (RT-PCR). The result of sequence analysis for the amplified fragment revealed that the cloned actin gene was 1012 bp in length (GenBank accession No. KC751541.1) and contained a 924-bp coding region and encoded a protein consisting of 307 amino acids. Homologous alignment showed that it shared over 80 and 96% identity with the nucleotide and amino acid sequences of actin from other plants, respectively. In addition, the cloned gene was used for phylogenetic analyses based on the deduced amino acid sequences, and the results suggested that the actin gene is highly conserved in evolution. The findings of this study will be useful for investigating the expression patterns of other genes in Aloe.