Research Article

Evaluation of hot saline solution and restriction endonuclease techniques in cytogenetic studies of Cycloneda sanguinea L. (Coccinellidae)

Published: March 22, 2007
Genet. Mol. Res. 6 (1) : 122-126
Cite this Article:
E.M.D. Maffei, S.G. Pompolo (2007). Evaluation of hot saline solution and restriction endonuclease techniques in cytogenetic studies of Cycloneda sanguinea L. (Coccinellidae). Genet. Mol. Res. 6(1): 122-126.
2,548 views

Abstract

The goal of the present study was to determine if simple methods, especially hot saline solution (HSS) and MspI and HaeIII restriction endonucleases, which do not require special equipments, may be helpful in studies of genetic variability in the lady beetle, Cycloneda sanguinea. The HSS method extracted the heterochromatin region, suggesting that it is composed mostly of DNA rich in A-T base pairs. However, the X and y chromosomes were resistant to HSS banding. These bands facilitated the identification of each chromosome. In this study, we used the restriction endonucleases with different G-C base target sequences: MspI C/GGC and HaeIII GG/CC. The use of restriction enzyme MspI did not show an effect on the autosomal chromosomes. On the other hand, the sex pair showed a pale staining, to help in the recognition of these chromosomes. HaeIII produced characteristic bands which were identified all along the chromosomes, facilitating the identification of each chromosome. Based on these results, we can consider the heterochromatin being heterogeneous. The findings obtained here, using different chromosomal banding techniques, may be useful in the identification of intraspecific chomosome variability, specifically in Coccinellidae (Coleoptera) chromosomes, even without special equipment.

The goal of the present study was to determine if simple methods, especially hot saline solution (HSS) and MspI and HaeIII restriction endonucleases, which do not require special equipments, may be helpful in studies of genetic variability in the lady beetle, Cycloneda sanguinea. The HSS method extracted the heterochromatin region, suggesting that it is composed mostly of DNA rich in A-T base pairs. However, the X and y chromosomes were resistant to HSS banding. These bands facilitated the identification of each chromosome. In this study, we used the restriction endonucleases with different G-C base target sequences: MspI C/GGC and HaeIII GG/CC. The use of restriction enzyme MspI did not show an effect on the autosomal chromosomes. On the other hand, the sex pair showed a pale staining, to help in the recognition of these chromosomes. HaeIII produced characteristic bands which were identified all along the chromosomes, facilitating the identification of each chromosome. Based on these results, we can consider the heterochromatin being heterogeneous. The findings obtained here, using different chromosomal banding techniques, may be useful in the identification of intraspecific chomosome variability, specifically in Coccinellidae (Coleoptera) chromosomes, even without special equipment.

About the Authors
Download: