Research Article

Analysis of gene expression profiles in healing rat fractures treated with nail and plate fixation

Published: October 20, 2014
Genet. Mol. Res. 13 (4) : 8450-8457 DOI: 10.4238/2014.October.20.21

Abstract

To compare fracture healing therapies, the gene expression profiles of rat fracture samples treated with nail and plate fixation were analyzed at 1 day, 3 days, 1 week, 2 weeks, 4 weeks, and 6 weeks after surgery. The gene expression profiles GSE1685, which include 19 samples, were downloaded from the Gene Expression Omnibus database. After preprocessing, the gene expression profiles were subjected to time series analysis using the Short Time-series Expression Miner software, and the significantly differentially expressed gene (DEG) sets were selected. Further, the distributions of those DEG sets on the corresponding chromosomes were identified using the functional classification tool. Finally, the DEGs were subjected to function and pathway enrichment analysis. DEG analysis indicated that the number of DEGs (854 genes) from nail fixation was significantly lower than that of DEGs (1029 genes) from plate fixation. The DEGs were mainly enriched in cell proliferation, cellular localization, and response to wounding functions. Several critical DEGs expressed during the fracture healing process were screened, and 2 common pathways were enriched for the DEGs in the nail fixation and plate fixation. These DEGs and pathways may be potential targets or predictive markers during fracture healing.

To compare fracture healing therapies, the gene expression profiles of rat fracture samples treated with nail and plate fixation were analyzed at 1 day, 3 days, 1 week, 2 weeks, 4 weeks, and 6 weeks after surgery. The gene expression profiles GSE1685, which include 19 samples, were downloaded from the Gene Expression Omnibus database. After preprocessing, the gene expression profiles were subjected to time series analysis using the Short Time-series Expression Miner software, and the significantly differentially expressed gene (DEG) sets were selected. Further, the distributions of those DEG sets on the corresponding chromosomes were identified using the functional classification tool. Finally, the DEGs were subjected to function and pathway enrichment analysis. DEG analysis indicated that the number of DEGs (854 genes) from nail fixation was significantly lower than that of DEGs (1029 genes) from plate fixation. The DEGs were mainly enriched in cell proliferation, cellular localization, and response to wounding functions. Several critical DEGs expressed during the fracture healing process were screened, and 2 common pathways were enriched for the DEGs in the nail fixation and plate fixation. These DEGs and pathways may be potential targets or predictive markers during fracture healing.

About the Authors