Research Article

Assessing the genotoxicities of sparteine and compounds isolated from Lupinus mexicanus and L. montanus seeds by using comet assay

Published: December 12, 2014
Genet. Mol. Res. 13 (4) : 10510-10517 DOI: https://doi.org/10.4238/2014.December.12.12
Cite this Article:
M.R. Silva, C.M. Alvarez, P.M. García, M.A. Ruiz (2014). Assessing the genotoxicities of sparteine and compounds isolated from Lupinus mexicanus and L. montanus seeds by using comet assay. Genet. Mol. Res. 13(4): 10510-10517. https://doi.org/10.4238/2014.December.12.12
3,440 views

Abstract

The genus Lupinus is widely distributed. Its seeds are used for animal and human food, and Lupinus possesses pharmacological potential because of its high content of quinolizidine alkaloids and flavonoids; however, there is little available information about its genotoxicity. We used the comet assay and staminal nuclei of Tradescantia (clone 4430) to evaluate the in vitro genotoxicity of 4 concentrations (0.01, 0.1, 0.5, and 1.0 mM) of alkaloid extracts of Lupinus mexicanus and Lupinus montanus, flavonoids of L. mexicanus, and commercial sparteine; nitrosodiethylamine was used as a positive control and untreated nuclei were used as a negative control. All concentrations of L. mexicanus and L. montanus showed significant genotoxic activity (P ≤ 0.05). A similar behavior was observed for flavonoid extracts of L. montanus except the 1.0 mM concentration. Sparteine showed genotoxic activity only at 0.5 mM. The order of genotoxicity of the compounds studied was as follows: L. mexicanus > L. montanus > flavonoids of L. montanus > sparteine. There is evident genotoxic activity in the compounds that were studied, particularly at lower concentrations (0.01 and 0.1 mM). Given the limited information about the genotoxicity of the compounds of L. mexicanus and L. montanus, further studies are necessary.

The genus Lupinus is widely distributed. Its seeds are used for animal and human food, and Lupinus possesses pharmacological potential because of its high content of quinolizidine alkaloids and flavonoids; however, there is little available information about its genotoxicity. We used the comet assay and staminal nuclei of Tradescantia (clone 4430) to evaluate the in vitro genotoxicity of 4 concentrations (0.01, 0.1, 0.5, and 1.0 mM) of alkaloid extracts of Lupinus mexicanus and Lupinus montanus, flavonoids of L. mexicanus, and commercial sparteine; nitrosodiethylamine was used as a positive control and untreated nuclei were used as a negative control. All concentrations of L. mexicanus and L. montanus showed significant genotoxic activity (P ≤ 0.05). A similar behavior was observed for flavonoid extracts of L. montanus except the 1.0 mM concentration. Sparteine showed genotoxic activity only at 0.5 mM. The order of genotoxicity of the compounds studied was as follows: L. mexicanus > L. montanus > flavonoids of L. montanus > sparteine. There is evident genotoxic activity in the compounds that were studied, particularly at lower concentrations (0.01 and 0.1 mM). Given the limited information about the genotoxicity of the compounds of L. mexicanus and L. montanus, further studies are necessary.