Protection effect of atorvastatin in cerebral ischemia-reperfusion injury rats by blocking the mitochondrial permeability transition pore
Abstract
The aim of this study was to investigate the influence of atorvastatin on the opening of the mitochondrial permeability transition pore (MPTP) and the expression of cytochrome C (Cyt C) in Sprague-Dawley rats with cerebral ischemia-reperfusion (I/R). The rat model of cerebral artery ischemia was established by the suture-occluded method with ischemia for 2 h and reperfusion for 72 h. Thirty-four male rats were randomly divided into four groups: the normal group and the sham-operation group without any treatment, the I/R group with only intragastric administration of normal saline, and the intervention group, which received intragastric administration of 10 mg/kg atorvastatin at different times. All rats were sacrificed at 72 h. Compared with the I/R group, the morphology of nerve cells in the intervention group was reduced, the number of TUNEL-positive cells decreased, the expression of cortical cytoplasm Cyt C decreased, and the mitochondrial absorbance value increased. All of these differences were statistically significant. Atorvastatin could inhibit neuronal apoptosis and alleviate the cerebral I/R injury. The mechanism may be related to the blocking of the MPTP opening and the subsequent reduction of Cyt C release.
The aim of this study was to investigate the influence of atorvastatin on the opening of the mitochondrial permeability transition pore (MPTP) and the expression of cytochrome C (Cyt C) in Sprague-Dawley rats with cerebral ischemia-reperfusion (I/R). The rat model of cerebral artery ischemia was established by the suture-occluded method with ischemia for 2 h and reperfusion for 72 h. Thirty-four male rats were randomly divided into four groups: the normal group and the sham-operation group without any treatment, the I/R group with only intragastric administration of normal saline, and the intervention group, which received intragastric administration of 10 mg/kg atorvastatin at different times. All rats were sacrificed at 72 h. Compared with the I/R group, the morphology of nerve cells in the intervention group was reduced, the number of TUNEL-positive cells decreased, the expression of cortical cytoplasm Cyt C decreased, and the mitochondrial absorbance value increased. All of these differences were statistically significant. Atorvastatin could inhibit neuronal apoptosis and alleviate the cerebral I/R injury. The mechanism may be related to the blocking of the MPTP opening and the subsequent reduction of Cyt C release.