Research Article

Novel NPHS1 splice site mutations in a Chinese child with congenital nephrotic syndrome

Published: January 23, 2015
Genet. Mol. Res. 14 (1) : 433-439 DOI: https://doi.org/10.4238/2015.January.23.17
Cite this Article:
R. Fu, M.F. Gou, W.H. Ma, J.J. He, Y. Luan, J. Liu (2015). Novel NPHS1 splice site mutations in a Chinese child with congenital nephrotic syndrome. Genet. Mol. Res. 14(1): 433-439. https://doi.org/10.4238/2015.January.23.17
2,793 views

Abstract

Congenital nephrotic syndrome (CNS) is defined as heavy proteinuria or nephrotic syndrome occurring before 3 months of age. It is characterized by early onset and progresses to end-stage renal disease. Recently, several genes associated with CNS have been identified, including NPHS1 and NPHS2. Mutations in the NPHS1 gene have been identified in patients with CNS in Finland with relatively high frequency. Thus far, only a few case reports about CNS have described an NPHS1 mutation in China. In this study, mutational analyses of NPHS1 and NPHS2 were performed in a Chinese child with CNS. Mutations were analyzed in all exons and exon/intron boundaries of NPHS1 and NPHS2 in the patient and his parents as well as in 50 unrelated controls using polymerase chain reaction and direct sequencing techniques. No mutations were detected in NPHS2. A novel splice site mutation (IVS11+1G>A) within intron 11 and a missense mutation within exon 8 (c.928G>A) in the NPHS1 gene were detected in the child. The child’s mother had normal urinalysis and a c.928G>A (D310N) heterozygous mutation, and his father had normal urinalysis and IVS11+1G>A. These were not identified in the 50 unrelated controls. The novel splice site mutation of IVS11+1G>A and a missense mutation at c.928G>A in NPHS1 were found to cause CNS in this Chinese child.

Congenital nephrotic syndrome (CNS) is defined as heavy proteinuria or nephrotic syndrome occurring before 3 months of age. It is characterized by early onset and progresses to end-stage renal disease. Recently, several genes associated with CNS have been identified, including NPHS1 and NPHS2. Mutations in the NPHS1 gene have been identified in patients with CNS in Finland with relatively high frequency. Thus far, only a few case reports about CNS have described an NPHS1 mutation in China. In this study, mutational analyses of NPHS1 and NPHS2 were performed in a Chinese child with CNS. Mutations were analyzed in all exons and exon/intron boundaries of NPHS1 and NPHS2 in the patient and his parents as well as in 50 unrelated controls using polymerase chain reaction and direct sequencing techniques. No mutations were detected in NPHS2. A novel splice site mutation (IVS11+1G>A) within intron 11 and a missense mutation within exon 8 (c.928G>A) in the NPHS1 gene were detected in the child. The child’s mother had normal urinalysis and a c.928G>A (D310N) heterozygous mutation, and his father had normal urinalysis and IVS11+1G>A. These were not identified in the 50 unrelated controls. The novel splice site mutation of IVS11+1G>A and a missense mutation at c.928G>A in NPHS1 were found to cause CNS in this Chinese child.