Research Article

Developmental changes in the expression of the GLUT2 and GLUT4 genes in the longissimus dorsi muscle of Yorkshire and Tibetan pigs

Published: February 13, 2015
Genet. Mol. Res. 14 (1) : 1287-1292 DOI: https://doi.org/10.4238/2015.February.13.7
Cite this Article:
(2015). Developmental changes in the expression of the GLUT2 and GLUT4 genes in the longissimus dorsi muscle of Yorkshire and Tibetan pigs. Genet. Mol. Res. 14(1): gmr4733. https://doi.org/10.4238/2015.February.13.7
1,562 views

Abstract

Glucose transporter proteins 2 and 4 (GLUT2 and GLUT4) play important roles in glucose transport and energy metabolism. Changes in the levels of GLUT2 and GLUT4 mRNA were measured in longissimus dorsi muscle from the lean Yorkshire and fat Tibetan pig breeds at six different time points (1, 2, 3, 4, 5, and 6 months) with quantitative real-time polymerase chain reactions. The results showed that GLUT2 and GLUT4 mRNA were abundantly expressed in the longissimus dorsi muscle and that the developmental expression patterns were similar in both breeds. Tibetan pigs exhibited higher intramuscular fat and GLUT2 mRNA levels, while Yorkshire pigs exhibited a higher myofiber cross-sectional area (CSA) and GLUT4 mRNA levels. Furthermore, the changes in the GLUT4 mRNA levels were strongly and positively correlated with the CSA over a period of six months. These results exhibit time- and breed-specific expression patterns of GLUT2 and GLUT4, which highlight their potential as candidate genes for assessing adipose deposition and muscle development in pigs. These differences in the expression of GLUT family genes may also have indications for meat quality.

Glucose transporter proteins 2 and 4 (GLUT2 and GLUT4) play important roles in glucose transport and energy metabolism. Changes in the levels of GLUT2 and GLUT4 mRNA were measured in longissimus dorsi muscle from the lean Yorkshire and fat Tibetan pig breeds at six different time points (1, 2, 3, 4, 5, and 6 months) with quantitative real-time polymerase chain reactions. The results showed that GLUT2 and GLUT4 mRNA were abundantly expressed in the longissimus dorsi muscle and that the developmental expression patterns were similar in both breeds. Tibetan pigs exhibited higher intramuscular fat and GLUT2 mRNA levels, while Yorkshire pigs exhibited a higher myofiber cross-sectional area (CSA) and GLUT4 mRNA levels. Furthermore, the changes in the GLUT4 mRNA levels were strongly and positively correlated with the CSA over a period of six months. These results exhibit time- and breed-specific expression patterns of GLUT2 and GLUT4, which highlight their potential as candidate genes for assessing adipose deposition and muscle development in pigs. These differences in the expression of GLUT family genes may also have indications for meat quality.