Research Article

Immune protective mechanism of rMOMP protein ophthalmic vaccine regarding intraocular hypertension and retinal optic nerve injury in rats

Published: April 13, 2015
Genet. Mol. Res. 14 (2) : 3264-3273 DOI: https://doi.org/10.4238/2015.April.13.5
Cite this Article:
X.Y. Xin, F.Y. Sun, L.L. Gao (2015). Immune protective mechanism of rMOMP protein ophthalmic vaccine regarding intraocular hypertension and retinal optic nerve injury in rats. Genet. Mol. Res. 14(2): 3264-3273. https://doi.org/10.4238/2015.April.13.5
677 views

Abstract

The aim of this study was to explore the immune protective mechanism of rMOMP protein vaccine in intraocular hypertension and retinal optic nerve injury in rats. The rMOMP protein ophthalmic vaccine was prepared and quality-controlled. Sixty normal adult SD rats were randomly divided into two groups to establish a chronic ocular hypertension model and an optic nerve injury model. The model rats were vaccinated with rMOMP-CS ophthalmic vaccine. Fluorogold retrograde tracing was used to observe retinal ganglion cells, and an immunofluorescence method to determine the expression of retinal GAP43, CD3, BDNF, and GDNF. rMOMP protein ophthalmic vaccine met the requirements for medicinal use. The number of retinal ganglion cells (RGCs) of the rMOMP-CS group in the chronic ocular hypertension model was significantly higher than that of the CS group (P < 0.05). The count of RGCs of the rMOMP-CS group in the optic nerve clamping injury model was significantly higher than that of the CS group (P < 0.01). Thus, rMOMP protein ophthalmic vaccine can induce an increase in the expression of retinal neurotrophic factors, thereby exerting a protective effect on damaged retinal optic nerve.

The aim of this study was to explore the immune protective mechanism of rMOMP protein vaccine in intraocular hypertension and retinal optic nerve injury in rats. The rMOMP protein ophthalmic vaccine was prepared and quality-controlled. Sixty normal adult SD rats were randomly divided into two groups to establish a chronic ocular hypertension model and an optic nerve injury model. The model rats were vaccinated with rMOMP-CS ophthalmic vaccine. Fluorogold retrograde tracing was used to observe retinal ganglion cells, and an immunofluorescence method to determine the expression of retinal GAP43, CD3, BDNF, and GDNF. rMOMP protein ophthalmic vaccine met the requirements for medicinal use. The number of retinal ganglion cells (RGCs) of the rMOMP-CS group in the chronic ocular hypertension model was significantly higher than that of the CS group (P

About the Authors