Research Article

Transcriptomic identification of chemoreceptor genes in the red palm weevil Rhynchophorus ferrugineus

Published: July 06, 2015
Genet. Mol. Res. 14 (3) : 7469-7480 DOI: 10.4238/2015.July.3.23

Abstract

Olfaction is crucial for insects’ survival because it enables them to recognize various environmental information. It is primarily mediated by a large family of chemoreceptors, including olfactory receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs). Here, we assembled the transcriptome of the economically important pest of palms, Rhynchophorus ferrugineus, to reveal its chemoreceptor gene repertoire. About 8.08 Gbp data were generated using a HiSeq platform and their assembly led to a total of 24,439 unigenes. Among the transcripts, 12,523 (51.24%) showed significant similarity (E-value <10-5) to known proteins in the National Center for Biotechnology Information Nr database. From these sequences, 18 candidate genes of ORs were identified. Nine putative transcripts were homologous to GR genes, while 9 were similar to IR genes. The expression profiles of all identified chemoreceptor genes were determined by quantitative real-time PCR in antenna, head, thorax, abdomen, and legs of both sexes. Most chemoreceptor genes were antenna-enriched. This study demonstrated a successful application of a transcriptome for discovering a large number of divergent chemoreceptor genes of a non-model organism. The findings provide a valuable sequence resource and gene tissue distribution information for systematic functional analysis of molecular mechanisms underlying chemoreception in this pest.

Olfaction is crucial for insects’ survival because it enables them to recognize various environmental information. It is primarily mediated by a large family of chemoreceptors, including olfactory receptors (ORs), gustatory receptors (GRs), and ionotropic receptors (IRs). Here, we assembled the transcriptome of the economically important pest of palms, Rhynchophorus ferrugineus, to reveal its chemoreceptor gene repertoire. About 8.08 Gbp data were generated using a HiSeq platform and their assembly led to a total of 24,439 unigenes. Among the transcripts, 12,523 (51.24%) showed significant similarity (E-value <10-5) to known proteins in the National Center for Biotechnology Information Nr database. From these sequences, 18 candidate genes of ORs were identified. Nine putative transcripts were homologous to GR genes, while 9 were similar to IR genes. The expression profiles of all identified chemoreceptor genes were determined by quantitative real-time PCR in antenna, head, thorax, abdomen, and legs of both sexes. Most chemoreceptor genes were antenna-enriched. This study demonstrated a successful application of a transcriptome for discovering a large number of divergent chemoreceptor genes of a non-model organism. The findings provide a valuable sequence resource and gene tissue distribution information for systematic functional analysis of molecular mechanisms underlying chemoreception in this pest.

About the Authors