Research Article

Thermotherapy-induced reduction in glioma invasiveness is mediated by tumor necrosis factor-alpha

Published: October 02, 2015
Genet. Mol. Res. 14 (4) : 11771-11779 DOI: https://doi.org/10.4238/2015.October.2.11
Cite this Article:
L.J. Qin, T. Zhang, Y.S. Jia, Y.B. Zhang, Y.X. Zhang, H.T. Wang (2015). Thermotherapy-induced reduction in glioma invasiveness is mediated by tumor necrosis factor-alpha. Genet. Mol. Res. 14(4): 11771-11779. https://doi.org/10.4238/2015.October.2.11
3,357 views

Abstract

Thermotherapy has been proven to be effective for the treatment of various tumors, including glioma. We determined whether tumor necrosis factor-alpha (TNF-α) is involved in the regulation of the biological processes of glioma development. Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry were used to investigate the levels of TNF-α mRNA and heat shock factor-1 (HSF1) protein, respectively, in glioma cells. Radioimmunoassay was used to dynamically monitor the contents of TNF-α in the nutrient fluid of C6 cells after thermotherapy treatment. Crystal violet staining was used to determine glioma invasiveness. The most obvious increases in HSF1 protein and TNF-α mRNA in C6 cells were observed at 30 and 60 min after thermotherapy, respectively. In addition, the radioactivity of TNF-α in the culture fluid of the C6 cells reached a peak after 120 min of thermotherapy. In addition, glioma invasiveness decreased and the concentration of TNF-α reached a maximum after 120 min of thermotherapy. Our results show that the decrease in thermotherapy-mediated glioma invasiveness is due to the accelerated release of TNF-α, which could promote the release of HSF1 from neurospongioma cells.

Thermotherapy has been proven to be effective for the treatment of various tumors, including glioma. We determined whether tumor necrosis factor-alpha (TNF-α) is involved in the regulation of the biological processes of glioma development. Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemistry were used to investigate the levels of TNF-α mRNA and heat shock factor-1 (HSF1) protein, respectively, in glioma cells. Radioimmunoassay was used to dynamically monitor the contents of TNF-α in the nutrient fluid of C6 cells after thermotherapy treatment. Crystal violet staining was used to determine glioma invasiveness. The most obvious increases in HSF1 protein and TNF-α mRNA in C6 cells were observed at 30 and 60 min after thermotherapy, respectively. In addition, the radioactivity of TNF-α in the culture fluid of the C6 cells reached a peak after 120 min of thermotherapy. In addition, glioma invasiveness decreased and the concentration of TNF-α reached a maximum after 120 min of thermotherapy. Our results show that the decrease in thermotherapy-mediated glioma invasiveness is due to the accelerated release of TNF-α, which could promote the release of HSF1 from neurospongioma cells.