Research Article

Identification and characterization of microsatellite markers from the tropical sea cucumber, Stichopus horrens (Selenka)

Published: October 28, 2015
Genet. Mol. Res. 14 (4) : 13582-13587 DOI: https://doi.org/10.4238/2015.October.28.18
Cite this Article:
J.B. Shangguan, Z.B. Li, Y. Yuan, Y.S. Huang (2015). Identification and characterization of microsatellite markers from the tropical sea cucumber, Stichopus horrens (Selenka). Genet. Mol. Res. 14(4): 13582-13587. https://doi.org/10.4238/2015.October.28.18
979 views

Abstract

Tropical commercial sea cucumber Stichopus horrens is extensively distributed throughout the tropical Indo-Pacific region, and wild stocks have been severely depleted over the past decade. In this study, we used the microsatellite enrichment library of S. horrens to identify and characterize 13 microsatellite loci, including 11 polymorphic loci and 2 monomorphic loci. Among the 11 polymorphic loci, the number of alleles was 3-8. The observed and expected heterozygosity varied from 0.1364 to 0.8966 and from 0.1653 to 0.7551, respectively. Additionally, all 11 polymorphic loci showed moderate and high polymorphism with the polymorphism information content (0.271-0.7311). A total of 9 polymorphic loci were in Hardy-Weinberg equilibrium, except for 2 loci (adjusted P = 0.004545). Linkage disequilibrium was not detected in any pairs of polymorphic loci. The present study will be useful for studying genetic structure, population conservation, and breeding of wild S. horrens; moreover, our results contribute to the phylogeny and evolutionary research of Holothuroidea.

Tropical commercial sea cucumber Stichopus horrens is extensively distributed throughout the tropical Indo-Pacific region, and wild stocks have been severely depleted over the past decade. In this study, we used the microsatellite enrichment library of S. horrens to identify and characterize 13 microsatellite loci, including 11 polymorphic loci and 2 monomorphic loci. Among the 11 polymorphic loci, the number of alleles was 3-8. The observed and expected heterozygosity varied from 0.1364 to 0.8966 and from 0.1653 to 0.7551, respectively. Additionally, all 11 polymorphic loci showed moderate and high polymorphism with the polymorphism information content (0.271-0.7311). A total of 9 polymorphic loci were in Hardy-Weinberg equilibrium, except for 2 loci (adjusted P = 0.004545). Linkage disequilibrium was not detected in any pairs of polymorphic loci. The present study will be useful for studying genetic structure, population conservation, and breeding of wild S. horrens; moreover, our results contribute to the phylogeny and evolutionary research of Holothuroidea.