Research Article

Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers

Published: October 30, 2015
Genet. Mol. Res. 14 (4) : 13868-13879 DOI: https://doi.org/10.4238/2015.October.29.7
Cite this Article:
(2015). Genetic diversity of cultivated and wild tomatoes revealed by morphological traits and SSR markers. Genet. Mol. Res. 14(4): gmr5756. https://doi.org/10.4238/2015.October.29.7
926 views

Abstract

In the current study, morphological traits and molecular markers were used to assess the genetic diversity of 29 cultivated tomatoes, 14 wild tomatoes and seven introgression lines. The three components of the principal component analysis (PCA) explained 78.54% of the total morphological variation in the 50 tomato genotypes assessed. Based on these morphological traits, a three-dimensional PCA plot separated the 50 genotypes into distinct groups, and a dendrogram divided them into six clusters. Fifteen polymorphic genomic simple- sequence repeat (genomic-SSR) and 13 polymorphic expressed sequence tag-derived SSR (EST-SSR) markers amplified 1115 and 780 clear fragments, respectively. Genomic-SSRs detected a total of 64 alleles, with a mean of 4 alleles per primer, while EST-SSRs detected 52 alleles, with a mean of 4 alleles per primer. The polymorphism information content was slightly higher in genomic-SSRs (0.49) than in EST-SSRs (0.45). The mean similarity coefficient among the wild tomatoes was lower than the mean similarity coefficient among the cultivated tomatoes. The dendrogram based on genetic distance divided the 50 tomato genotypes into eight clusters. The Mantel test between genomic-SSR and EST-SSR matrices revealed a good correlation, whereas the morphological matrices and the molecular matrices were weakly correlated. We confirm the applicability of EST-SSRs in analyzing genetic diversity among cultivated and wild tomatoes. High variability of the 50 tomato genotypes was observed at the morphological and molecular level, indicating valuable tomato germplasm, especially in the wild tomatoes, which could be used for further genetic studies.

In the current study, morphological traits and molecular markers were used to assess the genetic diversity of 29 cultivated tomatoes, 14 wild tomatoes and seven introgression lines. The three components of the principal component analysis (PCA) explained 78.54% of the total morphological variation in the 50 tomato genotypes assessed. Based on these morphological traits, a three-dimensional PCA plot separated the 50 genotypes into distinct groups, and a dendrogram divided them into six clusters. Fifteen polymorphic genomic simple- sequence repeat (genomic-SSR) and 13 polymorphic expressed sequence tag-derived SSR (EST-SSR) markers amplified 1115 and 780 clear fragments, respectively. Genomic-SSRs detected a total of 64 alleles, with a mean of 4 alleles per primer, while EST-SSRs detected 52 alleles, with a mean of 4 alleles per primer. The polymorphism information content was slightly higher in genomic-SSRs (0.49) than in EST-SSRs (0.45). The mean similarity coefficient among the wild tomatoes was lower than the mean similarity coefficient among the cultivated tomatoes. The dendrogram based on genetic distance divided the 50 tomato genotypes into eight clusters. The Mantel test between genomic-SSR and EST-SSR matrices revealed a good correlation, whereas the morphological matrices and the molecular matrices were weakly correlated. We confirm the applicability of EST-SSRs in analyzing genetic diversity among cultivated and wild tomatoes. High variability of the 50 tomato genotypes was observed at the morphological and molecular level, indicating valuable tomato germplasm, especially in the wild tomatoes, which could be used for further genetic studies.

About the Authors