Research Article

Potential of maize single-cross hybrids for extraction of inbred lines using the mean components and mixed models with microsatellite marker information

Published: October 21, 2008
Genet. Mol. Res. 7 (4) : 1106-1118 DOI: https://doi.org/10.4238/vol7-4gmr491
Cite this Article:
M. Balestre, R.G. Von Pinho, J.C. Souza, J.C. Machado (2008). Potential of maize single-cross hybrids for extraction of inbred lines using the mean components and mixed models with microsatellite marker information. Genet. Mol. Res. 7(4): 1106-1118. https://doi.org/10.4238/vol7-4gmr491
3,522 views

Abstract

The present study examined the importance of mean (m+a’ and d) components in the performance of single-cross hybrids for the formation of new populations and determined the contribution of the mixed model (best linear unbiased predictor of random effects, BLUP) method associated with molecular markers for the choice of crosses to obtain interpopulation hybrids. Ten single-cross commercial hybrids of different companies were used for this purpose, producing all possible double-cross hybrids through a complete diallel. The hybrids were evaluated in 15 locations in the agricultural year 2005/2006, using randomized complete block design with three repetitions. In three of these locations, estimates of m+a’ and d were obtained. DNA was extracted from the single-cross hybrids and 20 SSR primers were used, nine of which were linked to QTL for yield. There was no correlation between m+a’ of the single-cross hybrids with general combining ability (r = -0.15) inferring that populations with lines with high means do not always produce good hybrids. Also, it was observed that the correlation between the genetic distances with specific combining ability varied from 0.31 to 0.80 in the inter-group hybrids, while in the intra-group hybrids these estimates were low and non-significant. The heritability value obtained by BLUP was high and greater than that obtained by ordinary least squares (h2 = 0.95 and 0.86), confirming the greater selection accuracy by the BLUP method. There were no differences between the accuracy values obtained with microsatellite information and without this information, inferring that there was no advantage of progenitor information on balanced data. It can be concluded that the estimate m+a’ should not be used as a deciding parameter about the potential for extracting lines from a given population. The heritability and accuracy values obtained by BLUP allow the inference that it is possible to predict success in the choice of progenitors to obtain interpopulation hybrids.

The present study examined the importance of mean (m+a’ and d) components in the performance of single-cross hybrids for the formation of new populations and determined the contribution of the mixed model (best linear unbiased predictor of random effects, BLUP) method associated with molecular markers for the choice of crosses to obtain interpopulation hybrids. Ten single-cross commercial hybrids of different companies were used for this purpose, producing all possible double-cross hybrids through a complete diallel. The hybrids were evaluated in 15 locations in the agricultural year 2005/2006, using randomized complete block design with three repetitions. In three of these locations, estimates of m+a’ and d were obtained. DNA was extracted from the single-cross hybrids and 20 SSR primers were used, nine of which were linked to QTL for yield. There was no correlation between m+a’ of the single-cross hybrids with general combining ability (r = -0.15) inferring that populations with lines with high means do not always produce good hybrids. Also, it was observed that the correlation between the genetic distances with specific combining ability varied from 0.31 to 0.80 in the inter-group hybrids, while in the intra-group hybrids these estimates were low and non-significant. The heritability value obtained by BLUP was high and greater than that obtained by ordinary least squares (h2 = 0.95 and 0.86), confirming the greater selection accuracy by the BLUP method. There were no differences between the accuracy values obtained with microsatellite information and without this information, inferring that there was no advantage of progenitor information on balanced data. It can be concluded that the estimate m+a’ should not be used as a deciding parameter about the potential for extracting lines from a given population. The heritability and accuracy values obtained by BLUP allow the inference that it is possible to predict success in the choice of progenitors to obtain interpopulation hybrids.