Research Article

Comparison of EGFR mutation rates in lung adenocarcinoma tissue and pleural effusion samples

Published: April 04, 2016
Genet. Mol. Res. 15(2): gmr7001 DOI: https://doi.org/10.4238/gmr.15027001
Cite this Article:
Y. Guan, Z.J. Wang, L.Q. Wang, D.F. Hua, J. Liu, Y. Guan, Z.J. Wang, L.Q. Wang, D.F. Hua, J. Liu, Y. Guan, Z.J. Wang, L.Q. Wang, D.F. Hua, J. Liu (2016). Comparison of EGFR mutation rates in lung adenocarcinoma tissue and pleural effusion samples. Genet. Mol. Res. 15(2): gmr7001. https://doi.org/10.4238/gmr.15027001
2,342 views

Abstract

The goal of the current study was to investigate the differences in epidermal growth factor receptor (EGFR) mutation rates in tumor tissue and pleural effusion specimens from patients with lung adenocarcinoma. PCR amplification and gene sequencing were used to detect EGFR mutations in exons 18, 19, 20, and 21 in tumor tissue and pleural effusion samples from 50 patients with advanced lung adenocarcinoma. The EGFR mutation rate was 34.0% in tissue samples from patients with advanced lung adenocarcinoma. There were 11 cases with exon 19 mutations and 6 cases with exon 21 mutations. The EGFR mutation rate was 30.0% in pleural effusion specimens, including 10 cases with exon 19 mutation and 5 cases with exon 21 mutations. Although the tissue samples had a slightly higher mutation rate compared to the pleural effusion samples, the difference was not statistically significant. These results indicate that the EGFR mutation rate detected in pleural effusion specimens from patients with advanced lung adenocarcinoma is similar to that detected in tumor tissue samples. Therefore, pleural effusion specimens can potentially be used for EGFR mutation detection in advanced lung adenocarcinoma.

The goal of the current study was to investigate the differences in epidermal growth factor receptor (EGFR) mutation rates in tumor tissue and pleural effusion specimens from patients with lung adenocarcinoma. PCR amplification and gene sequencing were used to detect EGFR mutations in exons 18, 19, 20, and 21 in tumor tissue and pleural effusion samples from 50 patients with advanced lung adenocarcinoma. The EGFR mutation rate was 34.0% in tissue samples from patients with advanced lung adenocarcinoma. There were 11 cases with exon 19 mutations and 6 cases with exon 21 mutations. The EGFR mutation rate was 30.0% in pleural effusion specimens, including 10 cases with exon 19 mutation and 5 cases with exon 21 mutations. Although the tissue samples had a slightly higher mutation rate compared to the pleural effusion samples, the difference was not statistically significant. These results indicate that the EGFR mutation rate detected in pleural effusion specimens from patients with advanced lung adenocarcinoma is similar to that detected in tumor tissue samples. Therefore, pleural effusion specimens can potentially be used for EGFR mutation detection in advanced lung adenocarcinoma.