Research Article

Epigallocatechin-3-gallate protects retinal vascular endothelial cells from high glucose stress in vitro via the MAPK/ERK-VEGF pathway

Published: June 10, 2016
Genet. Mol. Res. 15(2): gmr7874 DOI: https://doi.org/10.4238/gmr.15027874
Cite this Article:
(2016). Epigallocatechin-3-gallate protects retinal vascular endothelial cells from high glucose stress in vitro via the MAPK/ERK-VEGF pathway. Genet. Mol. Res. 15(2): gmr7874. https://doi.org/10.4238/gmr.15027874
1,429 views

Abstract

Diabetic retinopathy (DR) is a frequent microvascular complication of diabetes, and one of the most common causes of legal blindness in the world. Epigallocatechin-3-gallate (EGCG) produces an anti-oxidative and anti-inflammatory effect against various human diseases. In this study, we determined the effect of EGCG on a human retinal endothelial cell (HREC) line. The cell viability was determined by a standard MTT assay, while the cell cycle and apoptosis rate were analyzed by flow cytometry. Inflammatory marker expression was detected by enzyme-linked immunosorbent assay. Treatment of HRECs with EGCG (20 and 40 mM) led to a significant decrease in the apoptosis rate (2.35 ± 0.56 and 1.24 ± 0.32%). The culture supernatant of cells treated with high glucose concentrations showed significantly higher levels of TNF-α (598.7 ± 89.7 vs 193.2 ± 38.5 pg/mL; P vs 1.61 ± 0.21 ng/mL; P vs 14.8 ± 2.9 ng/mL; P

Diabetic retinopathy (DR) is a frequent microvascular complication of diabetes, and one of the most common causes of legal blindness in the world. Epigallocatechin-3-gallate (EGCG) produces an anti-oxidative and anti-inflammatory effect against various human diseases. In this study, we determined the effect of EGCG on a human retinal endothelial cell (HREC) line. The cell viability was determined by a standard MTT assay, while the cell cycle and apoptosis rate were analyzed by flow cytometry. Inflammatory marker expression was detected by enzyme-linked immunosorbent assay. Treatment of HRECs with EGCG (20 and 40 mM) led to a significant decrease in the apoptosis rate (2.35 ± 0.56 and 1.24 ± 0.32%). The culture supernatant of cells treated with high glucose concentrations showed significantly higher levels of TNF-α (598.7 ± 89.7 vs 193.2 ± 38.5 pg/mL; P vs 1.61 ± 0.21 ng/mL; P vs 14.8 ± 2.9 ng/mL; P

About the Authors