Research Article

Association of ectomycorrhizal fungi with Picea crassifolia (Pinaceae, Piceoidae) from high-altitude stands in Mount Helan Nature Reserve, China

Published: September 02, 2016
Genet. Mol. Res. 15(3): gmr8604 DOI: 10.4238/gmr.15038604

Abstract

We investigated the diversity of ectomycorrhiza associated with the endemic Picea crassifolia in Mount Helan National Nature Reserve in Inner Mongolia, China. Toward this objective, we conducted morphological and molecular identification of ectomycorrhizae in soil cubes taken from pure P. crassifolia stands. Eleven types of ectomycorrhizal (ECM) organisms were separated, briefly described, and identified. Nine morphotypes belonged to the phylum Basidiomycotina [Amphinema byssoides, Cortinarius sp (cf. limonius), Cortinarius vernus, Inocybe cf. nitidiscula, Inocybe sp 1, Sebacina incrustans, Sebacina sp, Suillus luteus, and Piceirhiza tuberculata x Picea crassifolia (comb. Nov.)], and two morphotypes to the phylum Ascomycotina (Cenococcum geophilum and Helvella sp). The diversity of ECM organisms in P. crassifolia was lower than that reported by other studies on spruce or pine forests, or on sporocarp diversity in the high-mountain forests of China. Most of the fungi in the rhizosphere did not correspond to species previously recorded as sporocarps above ground. Here, several new ectomycorrhiza morphotypes are proposed and described. We also confirmed the ectomycorrhizal status of the genus Sebacina (order Sebacinales).

We investigated the diversity of ectomycorrhiza associated with the endemic Picea crassifolia in Mount Helan National Nature Reserve in Inner Mongolia, China. Toward this objective, we conducted morphological and molecular identification of ectomycorrhizae in soil cubes taken from pure P. crassifolia stands. Eleven types of ectomycorrhizal (ECM) organisms were separated, briefly described, and identified. Nine morphotypes belonged to the phylum Basidiomycotina [Amphinema byssoides, Cortinarius sp (cf. limonius), Cortinarius vernus, Inocybe cf. nitidiscula, Inocybe sp 1, Sebacina incrustans, Sebacina sp, Suillus luteus, and Piceirhiza tuberculata x Picea crassifolia (comb. Nov.)], and two morphotypes to the phylum Ascomycotina (Cenococcum geophilum and Helvella sp). The diversity of ECM organisms in P. crassifolia was lower than that reported by other studies on spruce or pine forests, or on sporocarp diversity in the high-mountain forests of China. Most of the fungi in the rhizosphere did not correspond to species previously recorded as sporocarps above ground. Here, several new ectomycorrhiza morphotypes are proposed and described. We also confirmed the ectomycorrhizal status of the genus Sebacina (order Sebacinales).