Research Article

Molecular cloning and functional characterization of cyclin E and CDK2 from Penaeus monodon

Published: September 16, 2016
Genet. Mol. Res. 15(3): gmr8716 DOI: https://doi.org/10.4238/gmr.15038716
Cite this Article:
(2016). Molecular cloning and functional characterization of cyclin E and CDK2 from Penaeus monodon. Genet. Mol. Res. 15(3): gmr8716. https://doi.org/10.4238/gmr.15038716
1,626 views

Abstract

Reduced reproductive performance of the black tiger shrimp (Penaeus monodon) has caused economic losses and hampered the fishing industry. Detailed investigation of the molecular mechanism by which the cell cycle is regulated in this organism is needed to understand the development and maturation of ovaries and oocytes, with a view to improving reproductive capacity. Cell cycle progression is mainly determined by cyclin-dependent kinase (CDK) and cyclin complexes, the cyclin E/CDK2 complex playing a key role in G1/S transition. However, knowledge of the interplay between cyclin E and CDK2 in invertebrates remains limited. In this study, full-length P. monodon cyclin E (Pmcyclin E) and CDK2 (PmCDK2) sequences were cloned. The open reading frame of Pmcyclin E was 1263 bp in length and encoded a 47.9-kDa protein, while that of PmCDK2 was 921 bp, encoding a protein of 34.9 kDa. Recombinant cyclin E and CDK2 proteins were expressed in Escherichia coli and purified by Ni-chelating affinity chromatography. In addition, a pull-down assay was performed to identify any interaction between Pmcyclin E and PmCDK2. This research provides a basis for the study of the functional mechanisms of the cyclin E/CDK2 complex in shrimp, further enriching our knowledge of invertebrate cell cycle regulation.

Reduced reproductive performance of the black tiger shrimp (Penaeus monodon) has caused economic losses and hampered the fishing industry. Detailed investigation of the molecular mechanism by which the cell cycle is regulated in this organism is needed to understand the development and maturation of ovaries and oocytes, with a view to improving reproductive capacity. Cell cycle progression is mainly determined by cyclin-dependent kinase (CDK) and cyclin complexes, the cyclin E/CDK2 complex playing a key role in G1/S transition. However, knowledge of the interplay between cyclin E and CDK2 in invertebrates remains limited. In this study, full-length P. monodon cyclin E (Pmcyclin E) and CDK2 (PmCDK2) sequences were cloned. The open reading frame of Pmcyclin E was 1263 bp in length and encoded a 47.9-kDa protein, while that of PmCDK2 was 921 bp, encoding a protein of 34.9 kDa. Recombinant cyclin E and CDK2 proteins were expressed in Escherichia coli and purified by Ni-chelating affinity chromatography. In addition, a pull-down assay was performed to identify any interaction between Pmcyclin E and PmCDK2. This research provides a basis for the study of the functional mechanisms of the cyclin E/CDK2 complex in shrimp, further enriching our knowledge of invertebrate cell cycle regulation.

About the Authors