Research Article

Novel and highly informative Capsicum SSR markers and their cross-species transferability

Published: September 23, 2016
Genet. Mol. Res. 15(3): gmr8689 DOI: 10.4238/gmr.15038689

Abstract

This study was undertaken primarily to develop new simple sequence repeat (SSR) markers for Capsicum. As part of this project aimed at broadening the use of molecular tools in Capsicum breeding, two genomic libraries enriched for AG/TC repeat sequences were constructed for Capsicum annuum. A total of 475 DNA clones were sequenced from both libraries and 144 SSR markers were tested on cultivated and wild species of Capsicum. Forty-five SSR markers were randomly selected to genotype a panel of 48 accessions of the Capsicum germplasm bank. The number of alleles per locus ranged from 2 to 11, with an average of 6 alleles. The polymorphism information content was on average 0.60, ranging from 0.20 to 0.83. The cross-species transferability to seven cultivated and wild Capsicum species was tested with a set of 91 SSR markers. We found that a high proportion of the loci produced amplicons in all species tested. C. frutescens had the highest number of transferable markers, whereas the wild species had the lowest. Our results indicate that the new markers can be readily used in genetic analyses of Capsicum.

This study was undertaken primarily to develop new simple sequence repeat (SSR) markers for Capsicum. As part of this project aimed at broadening the use of molecular tools in Capsicum breeding, two genomic libraries enriched for AG/TC repeat sequences were constructed for Capsicum annuum. A total of 475 DNA clones were sequenced from both libraries and 144 SSR markers were tested on cultivated and wild species of Capsicum. Forty-five SSR markers were randomly selected to genotype a panel of 48 accessions of the Capsicum germplasm bank. The number of alleles per locus ranged from 2 to 11, with an average of 6 alleles. The polymorphism information content was on average 0.60, ranging from 0.20 to 0.83. The cross-species transferability to seven cultivated and wild Capsicum species was tested with a set of 91 SSR markers. We found that a high proportion of the loci produced amplicons in all species tested. C. frutescens had the highest number of transferable markers, whereas the wild species had the lowest. Our results indicate that the new markers can be readily used in genetic analyses of Capsicum.