Nitrogen

Optimum conditions for inducing laccase production in Lentinus crinitus

J. S. Valle, Vandenberghe, L. P. S., Santana, T. T., Almeida, P. H., Pereira, A. M., Linde, G. A., Colauto, N. B., and Soccol, C. R., Optimum conditions for inducing laccase production in Lentinus crinitus, vol. 13, pp. 8544-8551, 2014.

Laccases are environmentally friendly alternatives in many important applications such as in bioremediation, biopulping, textile, and the food industry. They have wide substrate specificity, can oxidize a broad range of compounds, and show potential for use in various industrial processes. Therefore, developing methods to increase laccase production is important.

Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes

X. H. Liu, He, S. L., Zheng, Z. P., Tan, Z. B., Li, Z., and He, C., Genetic loci mapping associated with maize kernel number per ear based on a recombinant inbred line population grown under different nitrogen regimes, vol. 10, pp. 3267-3274, 2011.

Kernel number per ear (KNE) is one of the most important yield-related agronomic traits in maize (Zea mays). To clarify its genetic basis, we made a quantitative trait locus (QTL) analysis of KNE in a recombinant inbred line population derived from lines Mo17 and Huangzao4, under two nitrogen (N) regimes. Seven QTLs, on chromosomes 4, 6 and 9, were mapped under the high N regime, which explained phenotypic variation ranging from 5.03 to 15.49%.

Subscribe to Nitrogen