Publications

Found 14 results
Filters: Author is M. Brendel  [Clear All Filters]
2012
A. C. Fdos Santos, Marques, E. L. S., Gross, E., Souza, S. S., Dias, J. C. T., Brendel, M., and Rezende, R. P., Detection by denaturing gradient gel electrophoresis of ammonia-oxidizing bacteria in microcosms of crude oil-contaminated mangrove sediments, vol. 11, pp. 190-201, 2012.
Amorim JH, Macena TN, Lacerda GV Jr, Rezende RP, et al. (2008). An improved extraction protocol for metagenomic DNA from a soil of the Brazilian Atlantic Rainforest. Genet. Mol. Res. 7: 1226-1232. http://dx.doi.org/10.4238/vol7-4gmr509 PMid:19065757 Arp DJ, Yeager CM and Hyman MR (2001). Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12: 81-103. http://dx.doi.org/10.1023/A:1012089908518 PMid:11710592 Atlas RM (1995). Biorremediation of Petroleum Pollutants. University of Louisville, Lousville. Bartha R and Pramer D (1965). Features of a flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Sci. 100: 68-70. http://dx.doi.org/10.1097/00010694-196507000-00011 Bock E, Koops HP, Harms H and Ahlers B (1991). The Biochemistry of Nitrifying Organisms. In: Variations in Autotrophic Life (Shively JM and Barton LL, eds.). Academic Press, San Diego, 171-200. Bordenave S, Goni-Urriza MS, Caumette P and Duran R (2007). Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl. Environ. Microbiol. 73: 6089-6097. http://dx.doi.org/10.1128/AEM.01352-07 PMid:17704271    PMCid:2075027 Bothe H, Jost G, Schloter M, Ward BB, et al. (2000). Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24: 673-690. http://dx.doi.org/10.1111/j.1574-6976.2000.tb00566.x PMid:11077158 Brazil (1965). Federal Law No. 4.771, of September 15, 1965. Brasília, 1965. Available at [http://www.lei.adv.br]. Accessed October 7, 2011. Burton SA and Prosser JI (2001). Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl. Environ. Microbiol. 67: 2952-2957. http://dx.doi.org/10.1128/AEM.67.7.2952-2957.2001 PMid:11425707    PMCid:92966 CONAMA (1985). Conselho Nacional do Meio Ambiente. Resolution nº 04/1985, of September 18, 1985. Available at [http://www.mma.gov.br/port/conama/res/res85/res0485.html]. Accessed October 07, 2011. Evans FF, Rosado AS, Sebastian GV, Casella R, et al. (2004). Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49: 295-305. http://dx.doi.org/10.1016/j.femsec.2004.04.007 Gieseke A, Tarre S, Green M and de Beer D (2006). Nitrification in a biofilm at low pH values: role of in situ microenvironments and acid tolerance. Appl. Environ. Microbiol. 72: 4283-4292. http://dx.doi.org/10.1128/AEM.00241-06 PMid:16751543    PMCid:1489657 Harayama S, Kasai Y and Hara A (2004). Microbial communities in oil-contaminated seawater. Curr. Opin. Biotechnol. 15: 205-214. http://dx.doi.org/10.1016/j.copbio.2004.04.002 PMid:15193328 Heuer H, Krsek M, Baker P, Smalla K, et al. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241. PMid:9251210    PMCid:168621 Hollocher TC, Tate ME and Nicholas DJ (1981). Oxidation of ammonia by Nitrosomonas europaea. Definite 18O-tracer evidence that hydroxylamine formation involves a monooxygenase. J. Biol. Chem. 256: 10834-10836. PMid:7287737 Islam KR and Weil RR (2000). Soil quality indicator properties in mid-Atlantic soils as influenced by conservation management. J. Soil Water Conserv. 55: 69-78. Jia Z and Conrad R (2009). Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ. Microbiol. 11: 1658-1671. http://dx.doi.org/10.1111/j.1462-2920.2009.01891.x PMid:19236445 Junier P, Kim OS, Junier T, Ahn TS, et al. (2009). Community analysis of betaproteobacterial ammonia-oxidizing bacteria using the amoCAB operon. Appl. Microbiol. Biotechnol. 83: 175-188. http://dx.doi.org/10.1007/s00253-009-1923-x PMid:19274459    PMCid:2845890 Karlen DL, Andrews SS and Doran JW (2001). Soil quality: Current concepts and applications. Adv. Agron. 74: 1-40. http://dx.doi.org/10.1016/S0065-2113(01)74029-1 Kasai Y, Kishira H, Syutsubo K and Harayama S (2001). Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ. Microbiol. 3: 246-255. http://dx.doi.org/10.1046/j.1462-2920.2001.00185.x PMid:11359510 Kathiresan K and Bingham BL (2001). Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40: 81-251. http://dx.doi.org/10.1016/S0065-2881(01)40003-4 Koops H-P, Purkhold U, Pommerening-Röser A, Timmermann G, et al. (2006). The Lithoautotrophic Ammonia-Oxidizing Bacteria. In: The Prokaryotes (Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, et al., eds.). Vol. 2. Springer, New York, 778-811. http://dx.doi.org/10.1007/0-387-30745-1_36 Leahy JG and Colwell RR (1990). Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305- 315. PMid:2215423    PMCid:372779 Maciel BM, Santos AC, Dias JC, Vidal RO, et al. (2009). Simple DNA extraction protocol for a 16S rDNA study of bacterial diversity in tropical landfarm soil used for bioremediation of oil waste. Genet. Mol. Res. 8: 375-388. http://dx.doi.org/10.4238/vol8-1gmr559 PMid:19440973 McCaig AE, Embley TM and Prosser JI (1994). Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiol. Lett. 120: 363-367. http://dx.doi.org/10.1111/j.1574-6968.1994.tb07059.x PMid:8076810 Muyzer G, de Waal EC and Uitterlinden AG (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. PMid:7683183    PMCid:202176 Nicol GW, Leininger S, Schleper C and Prosser JI (2008). The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Environ. Microbiol. 10: 2966-2978. http://dx.doi.org/10.1111/j.1462-2920.2008.01701.x PMid:18707610 Nicolaisen MH and Ramsing NB (2002). Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J. Microbiol. Methods 50: 189-203. http://dx.doi.org/10.1016/S0167-7012(02)00026-X Prosser JI (1989). Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30: 125-181. http://dx.doi.org/10.1016/S0065-2911(08)60112-5 Rotthauwe JH, Witzel KP and Liesack W (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63: 4704-4712. PMid:9406389    PMCid:168793 Sayavedra-Soto LA, Hommes NG, Alzerreca JJ, Arp DJ, et al. (1998). Transcription of the amoC, amoA and amoB genes in Nitrosomonas europaea and Nitrosospira sp. NpAV. FEMS Microbiol. Lett. 167: 81-88. http://dx.doi.org/10.1111/j.1574-6968.1998.tb13211.x PMid:9785456 Stephen JR, Kowalchuk GA, Bruns MAV, McCaig AE, et al. (1998). Analysis of beta-subgroup proteobacterial ammonia oxidizer populations in soil by denaturing gradient gel electrophoresis analysis and hierarchical phylogenetic probing. Appl. Environ. Microbiol. 64: 2958-2965. PMid:9687457    PMCid:106799 Vanneli T and Hooper AB (1992). Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 58: 2321-2325. PMid:16348740    PMCid:195775 Vannelli T, Logan M, Arciero D and Hooper AB (1990). Degradation of halogenated aliphatics by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 56: 1169-1171. PMid:2339874    PMCid:184364 Zhang LM, Wang M, Prosser JI, Zheng YM, et al. (2009). Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. FEMS Microbiol. Ecol. 70: 52-61. http://dx.doi.org/10.1111/j.1574-6941.2009.00775.x PMid:19780828
J. H. Amorim, Vidal, R. O., Lacerda-Junior, G. V., Dias, J. C. T., Brendel, M., Rezende, R. P., and Cascardo, J. C. M., A simple boiling-based DNA extraction for RAPD profiling of landfarm soil to provide representative metagenomic content, vol. 11, pp. 182-189, 2012.
Amorim JH, Macena TN, Lacerda GV Jr, Rezende RP, et al. (2008). An improved extraction protocol for metagenomic DNA from a soil of the Brazilian Atlantic Rainforest. Genet. Mol. Res. 7: 1226-1232. http://dx.doi.org/10.4238/vol7-4gmr509 PMid:19065757 Ashburner M, Ball CA, Blake JA, Botstein D, et al. (2000). Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25: 25-29. http://dx.doi.org/10.1038/75556 PMid:10802651    PMCid:3037419 Daniel R (2004). The soil metagenome - a rich resource for the discovery of novel natural products. Curr. Opin. Biotechnol. 15: 199-204. http://dx.doi.org/10.1016/j.copbio.2004.04.005 PMid:15193327 Ewing B, Hillier L, Wendl MC and Green P (1998). Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8: 175-185. PMid:9521921 Huson DH, Auch AF, Qi J and Schuster SC (2007). MEGAN analysis of metagenomic data. Genome Res. 17: 377-386. http://dx.doi.org/10.1101/gr.5969107 PMid:17255551    PMCid:1800929 Johnson PL and Slatkin M (2006). Inference of population genetic parameters in metagenomics: a clean look at messy data. Genome Res. 16: 1320-1327. http://dx.doi.org/10.1101/gr.5431206 PMid:16954540    PMCid:1581441 Kanehisa M and Goto S (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28: 27-30. http://dx.doi.org/10.1093/nar/28.1.27 PMid:10592173    PMCid:102409 Maciel BM, Dias JC, Dos Santos AC, Argolo Filho RC, et al. (2007). Microbial surfactant activities from a petrochemical landfarm in a humid tropical region of Brazil. Can. J. Microbiol. 53: 937-943. http://dx.doi.org/10.1139/W07-052 PMid:17898850 McHardy AC and Rigoutsos I (2007). What’s in the mix: phylogenetic classification of metagenome sequence samples. Curr. Opin. Microbiol. 10: 499-503. http://dx.doi.org/10.1016/j.mib.2007.08.004 PMid:17933580 Riesenfeld CS, Schloss PD and Handelsman J (2004). Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38: 525-552. http://dx.doi.org/10.1146/annurev.genet.38.072902.091216 PMid:15568985 Robe P, Nalin R, Capellano C, Vogel TM, et al. (2003). Extraction of DNA from soil. Eur. J. Soil. Biol. 39: 183-190. http://dx.doi.org/10.1016/S1164-5563(03)00033-5 Roh C, Villatte F, Kim BG and Schmid RD (2006). Comparative study of methods for extraction and purification of enviromental DNA from soil and sludge samples. Appl. Biochem. Biotech. 134: 97-112. http://dx.doi.org/10.1385/ABAB:134:2:97 Rondon MR, August PR, Bettermann AD, Brady SF, et al. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541-2547. http://dx.doi.org/10.1128/AEM.66.6.2541-2547.2000 PMid:10831436    PMCid:110579 Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York. Schloss PD and Handelsman J (2003). Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14: 303-310. http://dx.doi.org/10.1016/S0958-1669(03)00067-3 Smit AFA, Hubley R and Green P (2004). RepeatMasker Open-3.0. 1996-2007. Streit WR and Schmitz RA (2004). Metagenomics - the key to the uncultured microbes. Curr. Opin. Microbiol. 7: 492-498. http://dx.doi.org/10.1016/j.mib.2004.08.002 PMid:15451504 Yun J, Kang S, Park S, Yoon H, et al. (2004). Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl. Environ. Microbiol. 70: 7229-7235. http://dx.doi.org/10.1128/AEM.70.12.7229-7235.2004 PMid:15574921    PMCid:535135
2011
B. M. Maciel, Dias, J. C. T., Romano, C. C., Sriranganathan, N., Brendel, M., and Rezende, R. P., Detection of Salmonella Enteritidis in asymptomatic carrier animals: comparison of quantitative real-time PCR and bacteriological culture methods, vol. 10, pp. 2578-2588, 2011.
Agron PG, Walker RL, Kinde H, Sawyer SJ, et al. (2001). Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar Enteritidis. Appl. Environ. Microbiol. 67: 4984-4991. http://dx.doi.org/10.1128/AEM.67.11.4984-4991.2001 PMid:11679316    PMCid:93261 APHA - American Public Health Association (1992). Compendium of Methods for the Microbiological Examination of Foods. 3rd edn. American Public Health Association, Washington. Boutaga K, van Winkelhoff AJ, Vandenbroucke-Grauls CM and Savelkoul PH (2003). Comparison of real-time PCR and culture for detection of Porphyromonas gingivalis in subgingival plaque samples. J. Clin. Microbiol. 41: 4950-4954. http://dx.doi.org/10.1128/JCM.41.11.4950-4954.2003 PMid:14605122    PMCid:262485 Buh GM, Cankar K, Zel J and Gruden K (2008). Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC Biotechnol. 8: 26. http://dx.doi.org/10.1186/1472-6750-8-26 PMid:18325084    PMCid:2322970 Center for Diseases Control and Prevention (CDC) (1990). Update: Salmonella enteritidis infections and shell eggs - United States, 1990. MMWR Morb. Mortal Wkly Rep. 39: 902-912. PMid:2123286 Center for Diseases Control and Prevention (CDC) (1992). Outbreak of Salmonella enteritidis infection associated with consumption of raw shell eggs, 1991. MMWR Morb. Mortal Wkly Rep. 41: 369-372. PMid:1584195 Centers for Disease Control and Prevention (CDC) (2003). Outbreaks of Salmonella serotype Enteritidis infection associated with eating shell eggs - United States, 1999-2001. MMWR Morb. Mortal Wkly Rep. 51: 1149-1152. PMid:12553566 Chen S, Yee A, Griffiths M, Larkin C, et al. (1997). The evaluation of a fluorogenic polymerase chain reaction assay for the detection of Salmonella species in food commodities. Int. J. Food Microbiol. 35: 239-250. http://dx.doi.org/10.1016/S0168-1605(97)01241-5 De Medici D, Croci L, Delibato E, Di Pasquale S, et al. (2003). Evaluation of DNA extraction methods for use in combination with SYBR green I real-time PCR to detect Salmonella enterica serotype Enteritidis in poultry. Appl. Environ. Microbiol. 69: 3456-3461. http://dx.doi.org/10.1128/AEM.69.6.3456-3461.2003 PMid:12788750    PMCid:161507 Deng SX, Cheng AC, Wang MS and Cao P (2007). Gastrointestinal tract distribution of Salmonella enteritidis in orally infected mice with a species-specific fluorescent quantitative polymerase chain reaction. World J. Gastroenterol. 13: 6568-6574. http://dx.doi.org/10.3748/wjg.13.6568 PMid:18161929 Deng SX, Cheng AC, Wang MS, Cao P, et al. (2008). Quantitative studies of the regular distribution pattern for Salmonella enteritidis in the internal organs of mice after oral challenge by a specific real-time polymerase chain reaction. World J. Gastroenterol. 14: 782-789. http://dx.doi.org/10.3748/wjg.14.782 PMid:18205272    PMCid:2684009 EFSA (2006). Opinion of the Scientific Panel on biological hazards (BIOHAZ) related to “risk assessment and mitigation options of Salmonella in pig production”. EFSA J 341: 1-131. Ellingson JL, Anderson JL, Carlson SA and Sharma VK (2004). Twelve hour real-time PCR technique for the sensitive and specific detection of Salmonella in raw and ready-to-eat meat products. Mol. Cell Probes 18: 51-57. http://dx.doi.org/10.1016/j.mcp.2003.09.007 PMid:15036370 Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, et al. (2006). Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin. Microbiol. Rev. 19: 165-256. http://dx.doi.org/10.1128/CMR.19.1.165-256.2006 PMid:16418529    PMCid:1360278 Galán JE and Zhou D (2000). Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl. Acad. Sci. U. S. A. 97: 8754-8761. http://dx.doi.org/10.1073/pnas.97.16.8754 Hadjinicolaou AV, Demetriou VL, Emmanuel MA, Kakoyiannis CK, et al. (2009). Molecular beacon-based real-time PCR detection of primary isolates of Salmonella typhimurium and Salmonella Enteritidis in environmental and clinical samples. BMC Microbiol. 9: 97. http://dx.doi.org/10.1186/1471-2180-9-97 PMid:19454003    PMCid:2689230 Hald T, Vose D, Wegener HC and Koupeev T (2004). A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 24: 255-269. http://dx.doi.org/10.1111/j.0272-4332.2004.00427.x PMid:15028016 Josefsen MH, Krause M, Hansen F and Hoorfar J (2007). Optimization of a 12-hour TaqMan PCR-based method for detection of Salmonella bacteria in meat. Appl. Environ. Microbiol. 73: 3040-3048. http://dx.doi.org/10.1128/AEM.02823-06 PMid:17351094    PMCid:1892850 Lemmon GH and Gardner SN (2008). Predicting the sensitivity and specificity of published real-time PCR assays. Ann. Clin. Microbiol. Antimicrob. 7: 18. http://dx.doi.org/10.1186/1476-0711-7-18 PMid:18817537    PMCid:2566554 Maciel BM, Argôlo Filho RC, Freitas ES, Kruschewsky FF, et al. (2004). Ocorrência de sorotipos exóticos de Salmonella encontrados em cães assintomáticos nos distritos do município de Ilhéus / BA - Brasil. Braz. J. Vet. Res. Anim. Sci. 41: 247-253. Maciel BM, Argolo Filho RC, Nogueira SS, Dias JC, et al. (2010). High prevalence of Salmonella in tegu lizards (Tupinambis merianae), and susceptibility of the serotypes to antibiotics. Zoonoses Public Health 57: e26-e32. http://dx.doi.org/10.1111/j.1863-2378.2009.01283.x PMid:19968856 Malorny B, Hoorfar J, Hugas M, Heuvelink A, et al. (2003). Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method. Int. J. Food Microbiol. 89: 241-249. http://dx.doi.org/10.1016/S0168-1605(03)00154-5 Malorny B, Paccassoni E, Fach P, Bunge C, et al. (2004). Diagnostic real-time PCR for detection of Salmonella in food. Appl. Environ. Microbiol. 70: 7046-7052. http://dx.doi.org/10.1128/AEM.70.12.7046-7052.2004 PMid:15574899    PMCid:535175 Malorny B, Made D, Teufel P, Berghof-Jager C, et al. (2007). Multicenter validation study of two blockcycler- and one capillary-based real-time PCR methods for the detection of Salmonella in milk powder. Int. J. Food Microbiol. 117: 211-218. http://dx.doi.org/10.1016/j.ijfoodmicro.2007.04.004 PMid:17512624 Malorny B, Lofstrom C, Wagner M, Kramer N, et al. (2008). Enumeration of salmonella bacteria in food and feed samples by real-time PCR for quantitative microbial risk assessment. Appl. Environ. Microbiol. 74: 1299-1304. http://dx.doi.org/10.1128/AEM.02489-07 PMid:18165357    PMCid:2258648 Martin SW (1984). Estimating disease prevalence and the interpretation of screening test results. Prev. Vet. Med. 2: 463-472. http://dx.doi.org/10.1016/0167-5877(84)90091-6 Nam HM, Srinivasan V, Gillespie BE, Murinda SE, et al. (2005). Application of SYBR green real-time PCR assay for specific detection of Salmonella spp. in dairy farm environmental samples. Int. J. Food Microbiol. 102: 161-171. http://dx.doi.org/10.1016/j.ijfoodmicro.2004.12.020 PMid:15913820 Nga TV, Karkey A, Dongol S, Thuy HN, et al. (2010). The sensitivity of real-time PCR amplification targeting invasive Salmonella serovars in biological specimens. BMC Infect. Dis. 10: 125. http://dx.doi.org/10.1186/1471-2334-10-125 PMid:20492644    PMCid:2886058 O’Brien JDP (1990). Aspects of Salmonella enteritidis control in poultry. Worlds Poult. Sci. J. 46: 119-124. http://dx.doi.org/10.1079/WPS19900015 Perelle S, Dilasser F, Malorny B, Grout J, et al. (2004). Comparison of PCR-ELISA and LightCycler real-time PCR assays for detecting Salmonella spp. in milk and meat samples. Mol. Cell Probes 18: 409-420. http://dx.doi.org/10.1016/j.mcp.2004.07.001 PMid:15488381 Pintar K, Cook A, Pollari F, Ravel A, et al. (2007). Quantitative effect of refrigerated storage time on the enumeration of Campylobacter, Listeria, and Salmonella on artificially inoculated raw chicken meat. J. Food Prot. 70: 739-743. PMid:17388068 Temelli S, Kahya S, Eyigor A and Carli KT (2010). Incidence of Salmonella Enteritidis in chicken layer flocks in Turkey: Results by real-time polymerase chain reaction and International Organization for Standardization culture methods. Poult. Sci. 89: 1406-1410. http://dx.doi.org/10.3382/ps.2010-00796 PMid:20548068 WHO-GFN (2009). WHO Global Foodborne Infections Network Country Databank - A resource to link human and non-human sources of Salmonella. Available at [http://www.who.int/gfn/activities/CDB_poster_Sept09.pdf]. Accessed June 27, 2009. Wolffs PF, Glencross K, Thibaudeau R and Griffiths MW (2006). Direct quantitation and detection of salmonellae in biological samples without enrichment, using two-step filtration and real-time PCR. Appl. Environ. Microbiol. 72: 3896-3900. http://dx.doi.org/10.1128/AEM.02112-05 PMid:16751494    PMCid:1489624
2010
M. Brendel, Marisco, G., Ganda, I., Wolter, R., and Pungartnik, C., DNA repair mutant pso2 of Saccharomyces cerevisiae is sensitive to intracellular acetaldehyde accumulated by disulfiram-mediated inhibition of acetaldehyde dehydrogenase, vol. 9, pp. 48-57, 2010.
Ausubel F, Brent R, Kingston RE and More DD (1996). Protocols in Molecular Biology. 3rd edn. (Suppl 33). Wiley, USA.   Berlin RG (1989). Disulfiram hepatotoxicity: a consideration of this mechanism and clinical spectrum. Alcohol Alcohol. 24: 241-246. PMid:2667530   Bertram B, Frei E, Scherf HR, Schuhmacher J, et al. (1985). Influence of a prolonged treatment with disulfiram and D(-) penicillamine on nitrosodiethylamine-induced biological and biochemical effects in rats. I. Investigations on the drug metabolizing system. J. Cancer Res. Clin. Oncol. 109: 9-15. http://dx.doi.org/10.1007/BF01884248 PMid:3972888   Boffetta P and Hashibe M (2006). Alcohol and cancer. Lancet Oncol. 7: 149-156. http://dx.doi.org/10.1016/S1470-2045(06)70577-0   Brendel M and Henriques JA (2001). The pso mutants of Saccharomyces cerevisiae comprise two groups: one deficient in DNA repair and another with altered mutagen metabolism. Mutat. Res. 489: 79-96. http://dx.doi.org/10.1016/S1383-5742(01)00066-7   Brendel M, Bonatto D, Strauss M, Revers LF, et al. (2003). Role of PSO genes in repair of DNA damage of Saccharomyces cerevisiae. Mutat. Res. 544: 179-193. http://dx.doi.org/10.1016/j.mrrev.2003.06.018 PMid:14644320   Cox BS and Parry JM (1968). The isolation, genetics and survival characteristics of ultraviolet light-sensitive mutants in yeast. Mutat. Res. 6: 37-55. http://dx.doi.org/10.1016/0027-5107(68)90101-2   Dall'Acqua F, Marciani S, Vedaldi D and Rodighiero G (1974). Skin photosensitization and cross-linkings formation in native DNA by furocoumarins. Z. Naturforsch. C. 29C: 635-636. PMid:4278271   Dronkert ML and Kanaar R (2001). Repair of DNA interstrand cross-links. Mutat. Res. 486: 217-247. http://dx.doi.org/10.1016/S0921-8777(01)00092-1   Fleer R and Brendel M (1979). Formation and fate of cross-links induced by polyfunctional anticancer drugs in yeast. Mol. Gen. Genet. 176: 41-52. http://dx.doi.org/10.1007/BF00334294 PMid:396449   Gibbs PE, McGregor WG, Maher VM, Nisson P, et al. (1998). A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc. Natl. Acad. Sci. U. S. A. 95: 6876-6880. http://dx.doi.org/10.1073/pnas.95.12.6876 PMid:9618506 PMCid:22668   Gocke E and Manney TR (1979). Expression of radiation-induced mutations at the arginine permease (CAN1) locus in Saccharomyces cerevisiae. Genetics 91: 53-66. PMid:372046 PMCid:1213931   Heidenreich E, Novotny R, Kneidinger B, Holzmann V, et al. (2003). Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. 22: 2274-2283. http://dx.doi.org/10.1093/emboj/cdg203 PMid:12727893 PMCid:156075   Henriques JA and Moustacchi E (1980). Isolation and characterization of pso mutants sensitive to photo-addition of psoralen derivatives in Saccharomyces cerevisiae. Genetics 95: 273-288. PMid:7009316 PMCid:1214226   Henriques JA, Brozmanova J and Brendel M (1997). Role of PSO genes in the repair of photoinduced interstrand cross-links and photooxidative damage in the DNA of the yeast Saccharomyces cerevisiae. J. Photochem. Photobiol. B 39: 185-196. http://dx.doi.org/10.1016/S1011-1344(97)00020-1   Jachymczyk WJ, von Borstel RC, Mowat MR and Hastings PJ (1981). Repair of interstrand cross-links in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: the RAD3 system and the RAD51 system. Mol. Gen. Genet. 182: 196-205. http://dx.doi.org/10.1007/BF00269658 PMid:7026973   Khan NA, Brendel M and Haynes RH (1970). Supersensitive double mutants in yeast. Mol. Gen. Genet. 107: 376-378. http://dx.doi.org/10.1007/BF00441200 PMid:5519983   Lawrence CW (2002). Cellular roles of DNA polymerase zeta and Rev1 protein. DNA Repair 1: 425-435. http://dx.doi.org/10.1016/S1568-7864(02)00038-1   Lehoczky P, McHugh PJ and Chovanec M (2007). DNA interstrand cross-link repair in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 31: 109-133. http://dx.doi.org/10.1111/j.1574-6976.2006.00046.x PMid:17096663   Lemontt JF (1971). Mutants of yeast defective in mutation induced by ultraviolet light. Genetics 68: 21-33. PMid:17248528 PMCid:1212581   Liu X, Lao Y, Yang IY, Hecht SS, et al. (2006). Replication-coupled repair of crotonaldehyde/acetaldehyde-induced guanine-guanine interstrand cross-links and their mutagenicity. Biochemistry 45: 12898-12905. http://dx.doi.org/10.1021/bi060792v PMid:17042508 PMCid:2518849   Matsuda T, Kawanishi M, Yagi T, Matsui S, et al. (1998). Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases. Nucleic Acids Res. 26: 1769-1774. http://dx.doi.org/10.1093/nar/26.7.1769 PMid:9512551 PMCid:147446   Matsuda T, Yabushita H, Kanaly RA, Shibutani S, et al. (2006). Increased DNA damage in ALDH2-deficient alcoholics. Chem. Res. Toxicol. 19: 1374-1378. http://dx.doi.org/10.1021/tx060113h PMid:17040107   Mechilli M, Schinoppi A, Kobos K, Natarajan AT, et al. (2008). DNA repair deficiency and acetaldehyde-induced chromosomal alterations in CHO cells. Mutagenesis 23: 51-56. http://dx.doi.org/10.1093/mutage/gem042 PMid:17989147   Noori P and Hou SM (2001). Mutational spectrum induced by acetaldehyde in the HPRT gene of human T lymphocytes resembles that in the p53 gene of esophageal cancers. Carcinogenesis 22: 1825-1830. http://dx.doi.org/10.1093/carcin/22.11.1825 PMid:11698345   O'Hanlon LH (2005). Studies seek molecular clues on alcohol's role in cancer. J. Natl. Cancer Inst. 97: 1563-1564. http://dx.doi.org/10.1093/jnci/dji393 PMid:16264173   Obe G and Anderson D (1987). International Commission for Protection against Environmental Mutagens and Carcinogens. ICPEMC Working Paper No. 15/1. Genetic effects of ethanol. Mutat. Res. 186: 177-200. http://dx.doi.org/10.1016/0165-1110(87)90003-0   Paget V, Lechevrel M and Sichel F (2008). Acetaldehyde-induced mutational pattern in the tumour suppressor gene TP53 analysed by use of a functional assay, the FASAY (functional analysis of separated alleles in yeast). Mutat. Res. 652: 12-19. http://dx.doi.org/10.1016/j.mrgentox.2007.11.010 PMid:18242117   Poschl G and Seitz HK (2004). Alcohol and cancer. Alcohol Alcohol. 39: 155-165. http://dx.doi.org/10.1093/alcalc/agh057 PMid:15082451   Pungartnik C, Picada J, Brendel M and Henriques JA (2002). Further phenotypic characterization of pso mutants of Saccharomyces cerevisiae with respect to DNA repair and response to oxidative stress. Genet. Mol. Res. 1: 79-89. PMid:14963816   Rahn RO and Patrick MH (1976). Photochemistry of DNA: Secondary Structure, Photosensitization, Base Substitution, and Exogenous Molecules. In: Photochemistry and Photobiology of Nucleic Acids. Vol. II Biology (Wang SY, ed.). Academic Press, New York, 97-145. http://dx.doi.org/10.1016/B978-0-12-734602-1.50009-5   Ristow H and Obe G (1978). Acetaldehyde induces cross-links in DNA and causes sister-chromatid exchanges in human cells. Mutat. Res. 58: 115-119. http://dx.doi.org/10.1016/0165-1218(78)90103-9   Rosman AS, Waraich A, Baraona E and Lieber CS (2000). Disulfiram treatment increases plasma and red blood cell acetaldehyde in abstinent alcoholics. Alcohol Clin. Exp. Res. 24: 958-964. http://dx.doi.org/10.1111/j.1530-0277.2000.tb04637.x PMid:10923997   Rossi R, Giustarini D, Dalle-Donne I and Milzani A (2006). Protein S-glutathionylation and platelet anti-aggregating activity of disulfiram. Biochem. Pharmacol. 72: 608-615. http://dx.doi.org/10.1016/j.bcp.2006.05.021 PMid:16815310   Ruhland A, Haase E, Siede W and Brendel M (1981). Isolation of yeast mutants sensitive to the bifunctional alkylating agent nitrogen mustard. Mol. Gen. Genet. 181: 346-351. http://dx.doi.org/10.1007/BF00425609 PMid:7017347   Sambrook J, Maniatis T and Fritsch EF (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.   Siede W and Friedberg EC (1992). Regulation of the yeast RAD2 gene: DNA damage-dependent induction correlates with protein binding to regulatory sequences and their deletion influences survival. Mol. Gen. Genet. 232: 247-256. PMid:1557031   Suh JJ, Pettinati HM, Kampman KM and O'Brien CP (2006). The status of disulfiram: a half of a century later. J. Clin. Psychopharmacol. 26: 290-302. http://dx.doi.org/10.1097/01.jcp.0000222512.25649.08 PMid:16702894   Wang M, McIntee EJ, Cheng G, Shi Y, et al. (2000). Identification of DNA adducts of acetaldehyde. Chem. Res. Toxicol. 13: 1149-1157. http://dx.doi.org/10.1021/tx000118t PMid:11087437   Wolter R, Siede W and Brendel M (1996). Regulation of SNM1, an inducible Saccharomyces cerevisiae gene required for repair of DNA cross-links. Mol. Gen. Genet. 250: 162-168. http://dx.doi.org/10.1007/BF02174175 PMid:8628215