Publications

Found 15 results
Filters: Author is Y. Ji  [Clear All Filters]
2016
Y. Ji, Jin, L. Y., Ji, Y., and Jin, L. Y., “Association between the interleukin-6-174 G/C polymorphism and risk of ischemic stroke: a meta-analysis”, published in Genet. Mol. Res. 14 (4): 13076-13083 (2015), vol. 15. p. -, 2016.
Y. Ji, Jin, L. Y., Ji, Y., and Jin, L. Y., “Association between the interleukin-6-174 G/C polymorphism and risk of ischemic stroke: a meta-analysis”, published in Genet. Mol. Res. 14 (4): 13076-13083 (2015), vol. 15. p. -, 2016.
K. Yu, Ji, Y., Wang, H., Xuan, Q. K., Li, B. B., Xiao, J. J., Sun, W., and Kong, X. Q., Association of miR-196a2, miR-27a, and miR-499 polymorphisms with isolated congenital heart disease in a Chinese population, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by grants from the Priority Academic Program Development of Jiangsu Higher Education Institutions (grant #PAPD2014-2016). Dr. Wei Sun is an Assistant Fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Dr. Xiangqing Kong is a Fellow at the Collaborative Innovation Center for Cardiovascular Disease Translational Medicine. REFERENCESBartel DP, et al (2009). MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233. http://dx.doi.org/10.1016/j.cell.2009.01.002 Bruneau BG, et al (2008). The developmental genetics of congenital heart disease. Nature 451: 943-948. http://dx.doi.org/10.1038/nature06801 Callis TE, Pandya K, Seok HY, Tang RH, et al (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119: 2772-2786. http://dx.doi.org/10.1172/JCI36154 Chan-Thomas PS, Thompson RP, Robert B, Yacoub MH, et al (1993). Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev. Dyn. 197: 203-216. http://dx.doi.org/10.1002/aja.1001970305 Chen J, Wang DZ, et al (2012). microRNAs in cardiovascular development. J. Mol. Cell. Cardiol. 52: 949-957. http://dx.doi.org/10.1016/j.yjmcc.2012.01.012 Condorelli G, Latronico MV, Cavarretta E, et al (2014). microRNAs in cardiovascular diseases: current knowledge and the road ahead. J. Am. Coll. Cardiol. 63: 2177-2187. http://dx.doi.org/10.1016/j.jacc.2014.01.050 Hoffman AE, Zheng T, Yi C, Leaderer D, et al (2009). microRNA miR-196a-2 and breast cancer: a genetic and epigenetic association study and functional analysis. Cancer Res. 69: 5970-5977. http://dx.doi.org/10.1158/0008-5472.CAN-09-0236 Hoffman JIe, et al (2013). The global burden of congenital heart disease. Cardiovasc. J. Afr. 24: 141-145. http://dx.doi.org/10.5830/CVJA-2013-028 Hu Z, Liang J, Wang Z, Tian T, et al (2009). Common genetic variants in pre-microRNAs were associated with increased risk of breast cancer in Chinese women. Hum. Mutat. 30: 79-84. http://dx.doi.org/10.1002/humu.20837 Kawasaki H, Taira K, et al (2004). MicroRNA-196 inhibits HOXB8 expression in myeloid differentiation of HL60 cells. Nucleic Acids Symp Ser (Oxf) 2004: 211-212. http://dx.doi.org/10.1093/nass/48.1.211 Lander ES, Linton LM, Birren B, Nusbaum C, International Human Genome Sequencing Consortiumet al (2001). Initial sequencing and analysis of the human genome. Nature 409: 860-921. http://dx.doi.org/10.1038/35057062 Lewis BP, Burge CB, Bartel DP, et al (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20. http://dx.doi.org/10.1016/j.cell.2004.12.035 Li M, Li RJ, Bai H, Xiao P, et al (2016). Association between the pre-miR-196a2 rs11614913 polymorphism and gastric cancer susceptibility in a Chinese population. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15027516 Mishra PJ, Bertino JR, et al (2009). MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10: 399-416. http://dx.doi.org/10.2217/14622416.10.3.399 Nishi H, Ono K, Horie T, Nagao K, et al (2011). MicroRNA-27a regulates beta cardiac myosin heavy chain gene expression by targeting thyroid hormone receptor beta1 in neonatal rat ventricular myocytes. Mol. Cell. Biol. 31: 744-755. http://dx.doi.org/10.1128/MCB.00581-10 Patrushev LI, Kovalenko TF, et al (2014). Functions of noncoding sequences in mammalian genomes. Biochemistry (Mosc.) 79: 1442-1469. http://dx.doi.org/10.1134/S0006297914130021 Ryan BM, Robles AI, Harris CC, et al (2010). Genetic variation in microRNA networks: the implications for cancer research. Nat. Rev. Cancer 10: 389-402. http://dx.doi.org/10.1038/nrc2867 Saunders MA, Liang H, Li WH, et al (2007). Human polymorphism at microRNAs and microRNA target sites. Proc. Natl. Acad. Sci. USA 104: 3300-3305. http://dx.doi.org/10.1073/pnas.0611347104 Schonrock N, Harvey RP, Mattick JS, et al (2012). Long noncoding RNAs in cardiac development and pathophysiology. Circ. Res. 111: 1349-1362. http://dx.doi.org/10.1161/CIRCRESAHA.112.268953 Sluijter JP, van Mil A, van Vliet P, Metz CH, et al (2010). MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler. Thromb. Vasc. Biol. 30: 859-868. http://dx.doi.org/10.1161/ATVBAHA.109.197434 Srivastava D, et al (2006). Making or breaking the heart: from lineage determination to morphogenesis. Cell 126: 1037-1048. http://dx.doi.org/10.1016/j.cell.2006.09.003 Sun Q, Gu H, Zeng Y, Xia Y, et al (2010). Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression. Cancer Sci. 101: 2241-2247. http://dx.doi.org/10.1111/j.1349-7006.2010.01667.x Tanzer A, Amemiya CT, Kim CB, Stadler PF, et al (2005). Evolution of microRNAs located within Hox gene clusters. J. Exp. Zoolog. B Mol. Dev. Evol. 304: 75-85. http://dx.doi.org/10.1002/jez.b.21021 Wang N, Tian ZQ, Li Y, Zhou RM, et al (2013). An A/G polymorphism rs3746444 in miR-499 is associated with increased cancer risk: a meta-analysis. Genet. Mol. Res. 12: 3955-3964. http://dx.doi.org/10.4238/2013.September.23.14 Wu M, Jolicoeur N, Li Z, Zhang L, et al (2008). Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29: 1710-1716. http://dx.doi.org/10.1093/carcin/bgn073 Xu J, Hu Z, Xu Z, Gu H, et al (2009). Functional variant in microRNA-196a2 contributes to the susceptibility of congenital heart disease in a Chinese population. Hum. Mutat. 30: 1231-1236. http://dx.doi.org/10.1002/humu.21044 Yu ZB, Han SP, Chen X, Sun XF, et al (2014). Systematic review of the prevalence of perinatal congenital heart disease. Chinese Journal of Evidence Based Pediatrics 9: 252-259. Zeng Y, Yi R, Cullen BR, et al (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24: 138-148. http://dx.doi.org/10.1038/sj.emboj.7600491 Zhang Y, Jin SQ, Li WX, Gao GQ, et al (2016). Association between RNF41 gene c.-206 T > A genetic polymorphism and risk of congenital heart diseases in the Chinese Mongolian population. Genet. Mol. Res. 15: .http://dx.doi.org/10.4238/gmr.15028089  
Y. Ji, Jin, H. H., Wang, M. D., Cao, W. X., Bao, J. L., Ji, Y., Jin, H. H., Wang, M. D., Cao, W. X., Bao, J. L., Ji, Y., Jin, H. H., Wang, M. D., Cao, W. X., and Bao, J. L., Methylation of the RASSFIA promoter in breast cancer, vol. 15. p. -, 2016.
Y. Ji, Jin, H. H., Wang, M. D., Cao, W. X., Bao, J. L., Ji, Y., Jin, H. H., Wang, M. D., Cao, W. X., Bao, J. L., Ji, Y., Jin, H. H., Wang, M. D., Cao, W. X., and Bao, J. L., Methylation of the RASSFIA promoter in breast cancer, vol. 15. p. -, 2016.
Y. Ji, Jin, H. H., Wang, M. D., Cao, W. X., Bao, J. L., Ji, Y., Jin, H. H., Wang, M. D., Cao, W. X., Bao, J. L., Ji, Y., Jin, H. H., Wang, M. D., Cao, W. X., and Bao, J. L., Methylation of the RASSFIA promoter in breast cancer, vol. 15. p. -, 2016.
W. J. Kim, Ji, Y., Choi, G., Kang, Y. M., Yang, S., Moon, B. C., Kim, W. J., Ji, Y., Choi, G., Kang, Y. M., Yang, S., and Moon, B. C., Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences, vol. 15, p. -, 2016.
W. J. Kim, Ji, Y., Choi, G., Kang, Y. M., Yang, S., Moon, B. C., Kim, W. J., Ji, Y., Choi, G., Kang, Y. M., Yang, S., and Moon, B. C., Molecular identification and phylogenetic analysis of important medicinal plant species in genus Paeonia based on rDNA-ITS, matK, and rbcL DNA barcode sequences, vol. 15, p. -, 2016.
B. C. Moon, Kim, W. J., Ji, Y., Lee, Y. M., Kang, Y. M., Choi, G., Moon, B. C., Kim, W. J., Ji, Y., Lee, Y. M., Kang, Y. M., and Choi, G., Molecular identification of the traditional herbal medicines, Arisaematis Rhizoma and Pinelliae Tuber, and common adulterants via universal DNA barcode sequences, vol. 15, p. -, 2016.
B. C. Moon, Kim, W. J., Ji, Y., Lee, Y. M., Kang, Y. M., Choi, G., Moon, B. C., Kim, W. J., Ji, Y., Lee, Y. M., Kang, Y. M., and Choi, G., Molecular identification of the traditional herbal medicines, Arisaematis Rhizoma and Pinelliae Tuber, and common adulterants via universal DNA barcode sequences, vol. 15, p. -, 2016.
Y. Ji, Jin, H. H., Wang, M. D., Cao, W. X., Bao, J. L., Ji, Y., Jin, H. H., Wang, M. D., Cao, W. X., and Bao, J. L., RETRACTION of “Methylation of the RASSFIA promoter in breast cancer” by Y. Ji, H.H. Jin, M.D. Wang, W.X. Cao, J.L. Bao - Genet. Mol. Res. 15 (2): gmr.15028261 (2016) - DOI: 10.4238/gmr.15028261, vol. 15. p. -, 2016.
Y. Ji, Jin, H. H., Wang, M. D., Cao, W. X., Bao, J. L., Ji, Y., Jin, H. H., Wang, M. D., Cao, W. X., and Bao, J. L., RETRACTION of “Methylation of the RASSFIA promoter in breast cancer” by Y. Ji, H.H. Jin, M.D. Wang, W.X. Cao, J.L. Bao - Genet. Mol. Res. 15 (2): gmr.15028261 (2016) - DOI: 10.4238/gmr.15028261, vol. 15. p. -, 2016.