Found 4 results
Filters: Author is L.A. Peixoto  [Clear All Filters]
L. A. Peixoto, Bhering, L. L., and Cruz, C. D., Determination of the optimal number of markers and individuals in a training population necessary for maximum prediction accuracy in F2 populations by using genomic selection models, vol. 15, no. 4, p. -, 2016.
ACKNOWLEDGMENTSWe are thankful to CAPES (Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior), CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FAPEMIG (Fundação de Amparo à Pesquisa de Minas Gerais), and Universidade Federal de Viçosa for financial support. We also thank the Biometric Lab (Universidade Federal de Viçosa, Brazil) where all analyses were performed by remote access.REFERENCESAllard RW (1999). Principles of plant breeding. John Wiley & Sons, New York. Ashraf M, Akram NA, Mehboob-Ur-RahmanFoolad MR, et al (2012). Marker-assisted selection in plant breeding for salinity tolerance. Methods Mol. Biol. 913: 305-333. Asoro FG, Newell MA, Beavis WD, Scott MP, et al (2011). Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4: 132-144. Bassi FM, Bentley AR, Charmet G, Ortiz R, et al (2016). Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci. 242: 23-36. Belaj A, del Carmen Dominguez-García M, Atienza SG, Urdíroz NM, et al (2012). Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet. Genomes 8: 365-378. Beyene Y, Semagn K, Mugo S, Tarekegne A, et al (2015). Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci. 55: 154-163. Bhering LL, Junqueira VS, Peixoto LA, Cruz CD, et al (2015). Comparison of methods used to identify superior individuals in genomic selection in plant breeding. Genet. Mol. Res. 14: 10888-10896. Boichard D, Chung H, Dassonneville R, David X, Bovine LD Consortiumet al (2012). Design of a bovine low-density SNP array optimized for imputation. PLoS One 7: e34130. Borém A and Miranda GV (2013). Melhoramento de Plantas. UFV, Viçosa. Cros D, Denis M, Sánchez L, Cochard B, et al (2015). Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor. Appl. Genet. 128: 397-410. Cruz CD, et al (2013). GENES: a software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 35: 271-276. de Los Campos G, Vazquez AI, Fernando R, Klimentidis YC, et al (2013). Prediction of complex human traits using the genomic best linear unbiased predictor. PLoS Genet. 9: e1003608. Desta ZA, Ortiz R, et al (2014). Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 19: 592-601. Dirlewanger E, Pronier V, Parvery C, Rothan C, et al (1998). Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor. Appl. Genet. 97: 888-895. Erbe M, Gredler B, Seefried FR, Bapst B, et al (2013). A function accounting for training set size and marker density to model the average accuracy of genomic prediction. PLoS One 8: e81046. Falconer D and Mackay T (1996). Introduction to Quantitative Genetics. Longman Scientific & Technical, Harlow, UK. Frascaroli E, Schrag TA, Melchinger AE, et al (2013). Genetic diversity analysis of elite European maize (Zea mays L.) inbred lines using AFLP, SSR, and SNP markers reveals ascertainment bias for a subset of SNPs. Theor. Appl. Genet. 126: 133-141. Gianola D, de los Campos G, Hill WG, Manfredi E, et al (2009). Additive genetic variability and the Bayesian alphabet. Genetics 183: 347-363. Gouy M, Rousselle Y, Bastianelli D, Lecomte P, et al (2013). Experimental assessment of the accuracy of genomic selection in sugarcane. Theor. Appl. Genet. 126: 2575-2586. Habier D, Fernando RL, Dekkers JC, et al (2009). Genomic selection using low-density marker panels. Genetics 182: 343-353. He J, Zhao X, Laroche A, Lu Z-X, et al (2014). Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 5: 484. Heaton MP, Harhay GP, Bennett GL, Stone RT, et al (2002). Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Mamm. Genome 13: 272-281. Isidro J, Jannink J-L, Akdemir D, Poland J, et al (2015). Training set optimization under population structure in genomic selection. Theor. Appl. Genet. 128: 145-158. Langer M, Maixner M, et al (2004). Molecular characterisation of grapevine yellows associated phytoplasmas of the stolbur-group based on RFLP-analysis of non-ribosomal DNA. VITIS-Journal of Grapevine Research 43: 191-199. Lightfoot DA, et al (2015). Two Decades of Molecular Marker-Assisted Breeding for Resistance to Soybean Sudden Death Syndrome. Crop Sci. 55: 1460-1484. Lynch M, Milligan BG, et al (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91-99. Meuwissen THE, Hayes BJ, Goddard ME, et al (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157: 1819-1829. Ogutu JO, Schulz-Streeck T, Piepho H-P, et al (2012). Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions. BMC Proc. 6 (Suppl 2): S10. Ordas B, Butron A, Alvarez A, Revilla P, et al (2012). Comparison of two methods of reciprocal recurrent selection in maize (Zea mays L.). Theor. Appl. Genet. 124: 1183-1191. Pandey MK, Rani NS, Sundaram RM, Laha GS, et al (2013). Improvement of two traditional Basmati rice varieties for bacterial blight resistance and plant stature through morphological and marker-assisted selection. Mol. Breed. 31: 239-246. Poland J, Endelman J, Dawson J, Rutkoski J, et al (2012). Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5: 103-113. R Core Team (2015). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Ren R, Ray R, Li P, Xu J, et al (2015). Construction of a high-density DArTseq SNP-based genetic map and identification of genomic regions with segregation distortion in a genetic population derived from a cross between feral and cultivated-type watermelon. Mol. Genet. Genomics 290: 1457-1470. Soldati MC, Fornes L, Van Zonneveld M, Thomas E, et al (2013). An assessment of the genetic diversity of Cedrela balansae C. DC. (Meliaceae) in Northwestern Argentina by means of combined use of SSR and AFLP molecular markers. Biochem. Syst. Ecol. 47: 45-55. Spindel J, Begum H, Akdemir D, Virk P, et al (2015). Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet. 11: e1004982. Tang B, Jenkins JN, McCarty J, Watson C, et al (1993). F2 hybrids of host plant germplasm and cotton cultivars: II. Heterosis and combining ability for fiber properties. Crop Sci. 33: 706-710. Tang B, Jenkins J, Watson C, McCarty J, et al (1996). Evaluation of genetic variances, heritabilities, and correlations for yield and fiber traits among cotton F2 hybrid populations. Euphytica 91: 315-322. Wellmann R, Preuß S, Tholen E, Heinkel J, et al (2013). Genomic selection using low density marker panels with application to a sire line in pigs. Genet. Sel. Evol. 45: 28. Würschum T, Reif JC, Kraft T, Janssen G, et al (2013). Genomic selection in sugar beet breeding populations. BMC Genet. 14: 85. Yaniv E, Raats D, Ronin Y, Korol AB, et al (2015). Evaluation of marker-assisted selection for the stripe rust resistance gene Yr15, introgressed from wild emmer wheat. Mol. Breed. 35: 1-12. Zhang J, Song Q, Cregan PB, Jiang G-L, et al (2016). Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor. Appl. Genet. 129: 117-130.