Publications
Found 8 results
Filters: Author is D.L. Wang [Clear All Filters]
“Genome-wide identification and expression analysis of CIPK genes in diploid cottons”, vol. 15, no. 4, p. -, 2016.
, Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe would like to thank Dr. Cairui Lu for help in data analysis. Research supported by grants from the National High-tech R&D Program (“863” Program) (Grant #2011AA10A102). REFERENCESAlbrecht V, Ritz O, Linder S, Harter K, et al (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J. 20: 1051-1063. http://dx.doi.org/10.1093/emboj/20.5.1051 Assmann SM, Wang XQ, et al (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant Biol. 4: 421-428. http://dx.doi.org/10.1016/S1369-5266(00)00195-3 Carra A, Gambino G, Schubert A, et al (2007). A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Anal. Biochem. 360: 318-320. http://dx.doi.org/10.1016/j.ab.2006.09.022 Chae MJ, Lee JS, Nam MH, Cho K, et al (2007). A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol. Biol. 63: 151-169. http://dx.doi.org/10.1007/s11103-006-9079-x Chen L, Ren F, Zhou L, Wang QQ, et al (2012). The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J. Exp. Bot. 63: 6211-6222. http://dx.doi.org/10.1093/jxb/ers273 Chen L, Wang QQ, Zhou L, Ren F, et al (2013). Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 40: 4759-4767. http://dx.doi.org/10.1007/s11033-013-2572-9 Chen X, Gu Z, Xin D, Hao L, et al (2011). Identification and characterization of putative CIPK genes in maize. J. Genet. Genomics 38: 77-87. http://dx.doi.org/10.1016/j.jcg.2011.01.005 Chothia C, Gough J, Vogel C, Teichmann SA, et al (2003). Evolution of the protein repertoire. Science 300: 1701-1703. http://dx.doi.org/10.1126/science.1085371 Flagel LE, Wendel JF, et al (2009). Gene duplication and evolutionary novelty in plants. New Phytol. 183: 557-564. http://dx.doi.org/10.1111/j.1469-8137.2009.02923.x Halfter U, Ishitani M, Zhu JK, et al (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97: 3735-3740. http://dx.doi.org/10.1073/pnas.97.7.3735 Harper JF, et al (2001). Dissecting calcium oscillators in plant cells. Trends Plant Sci. 6: 395-397. http://dx.doi.org/10.1016/S1360-1385(01)02023-4 He DH, Lei ZP, Tang BS, Xing HY, et al (2015). Identification and analysis of the TIFY gene family in Gossypium raimondii. Genet. Mol. Res. 14: 10119-10138. http://dx.doi.org/10.4238/2015.August.21.19 He L, Yang X, Wang L, Zhu L, et al (2013). Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 435: 209-215. http://dx.doi.org/10.1016/j.bbrc.2013.04.080 Huang C, Ding S, Zhang H, Du H, et al (2011). CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 181: 57-64. http://dx.doi.org/10.1016/j.plantsci.2011.03.011 Huertas R, Olías R, Eljakaoui Z, Gálvez FJ, et al (2012). Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 35: 1467-1482. http://dx.doi.org/10.1111/j.1365-3040.2012.02504.x Iqbal K, Azhar FM, Khan IA, et al, Ehsan-Ullah (2011). Variability for Drought Tolerance in Cotton (Gossypium hirsutum) and its Genetic Basis. Int. J. Agric. Biol. 13: 61-66. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, et al (2004). Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 134: 43-58. http://dx.doi.org/10.1104/pp.103.033068 Lecharny A, Boudet N, Gy I, Aubourg S, et al (2003). Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J. Struct. Funct. Genomics 3: 111-116. http://dx.doi.org/10.1023/A:1022614001371 Li F, Fan G, Wang K, Sun F, et al (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 46: 567-572. http://dx.doi.org/10.1038/ng.2987 Li LB, Zhang YR, Liu KC, Ni ZF, et al (2010). Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in Sorghum. Agric. Sci. China 9: 19-30. http://dx.doi.org/10.1016/S1671-2927(09)60063-8 Long M, Rosenberg C, Gilbert W, et al (1995). Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92: 12495-12499. http://dx.doi.org/10.1073/pnas.92.26.12495 Mahajan S, Sopory SK, Tuteja N, et al (2006). Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J. 273: 907-925. http://dx.doi.org/10.1111/j.1742-4658.2006.05111.x Mortazavi A, Williams BA, McCue K, Schaeffer L, et al (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628. http://dx.doi.org/10.1038/nmeth.1226 Pandey GK, Cheong YH, Kim BG, Grant JJ, et al (2007). CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res. 17: 411-421. http://dx.doi.org/10.1038/cr.2007.39 Paterson AH, Wendel JF, Gundlach H, Guo H, et al (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423-427. http://dx.doi.org/10.1038/nature11798 Roy SJ, Huang W, Wang XJ, Evrard A, et al (2013). A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. Plant Cell Environ. 36: 553-568. http://dx.doi.org/10.1111/j.1365-3040.2012.02595.x Sanders D, Pelloux J, Brownlee C, Harper JF, et al (2002). Calcium at the crossroads of signaling. Plant Cell 14 (Suppl): S401-S417. Schauser L, Wieloch W, Stougaard J, et al (2005). Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J. Mol. Evol. 60: 229-237. http://dx.doi.org/10.1007/s00239-004-0144-2 Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, et al (2006). SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 103: 12935-12940. http://dx.doi.org/10.1073/pnas.0602316103 Tang RJ, Liu H, Bao Y, Lv QD, et al (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74: 367-380. http://dx.doi.org/10.1007/s11103-010-9680-x Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D, et al (2009). CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 58: 778-790. http://dx.doi.org/10.1111/j.1365-313X.2009.03812.x Wang K, Wang Z, Li F, Ye W, et al (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44: 1098-1103. http://dx.doi.org/10.1038/ng.2371 Wang QQ, Liu F, Chen XS, Ma XJ, et al (2010). Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96: 369-376. http://dx.doi.org/10.1016/j.ygeno.2010.08.009 Wei KF, Wang YM, Xie DX, et al (2014). Identification and expression profile analysis of the protein kinase gene superfamily in maize development. Mol. Breed. 33: 155-172. http://dx.doi.org/10.1007/s11032-013-9941-x Weinl S, Kudla J, et al (2009). The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol. 184: 517-528. http://dx.doi.org/10.1111/j.1469-8137.2009.02938.x Xiang Y, Huang Y, Xiong L, et al (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144: 1416-1428. http://dx.doi.org/10.1104/pp.107.101295 Xu J, Li HD, Chen LQ, Wang Y, et al (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360. http://dx.doi.org/10.1016/j.cell.2006.06.011 Yin Z, Wang J, Wang D, Fan W, et al (2013). The MAPKKK gene family in Gossypium raimondii: genome-wide identification, classification and expression analysis. Int. J. Mol. Sci. 14: 18740-18757. http://dx.doi.org/10.3390/ijms140918740
“Genome-wide identification and expression analysis of CIPK genes in diploid cottons”, vol. 15, no. 4, p. -, 2016.
, Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe would like to thank Dr. Cairui Lu for help in data analysis. Research supported by grants from the National High-tech R&D Program (“863” Program) (Grant #2011AA10A102). REFERENCESAlbrecht V, Ritz O, Linder S, Harter K, et al (2001). The NAF domain defines a novel protein-protein interaction module conserved in Ca2+-regulated kinases. EMBO J. 20: 1051-1063. http://dx.doi.org/10.1093/emboj/20.5.1051 Assmann SM, Wang XQ, et al (2001). From milliseconds to millions of years: guard cells and environmental responses. Curr. Opin. Plant Biol. 4: 421-428. http://dx.doi.org/10.1016/S1369-5266(00)00195-3 Carra A, Gambino G, Schubert A, et al (2007). A cetyltrimethylammonium bromide-based method to extract low-molecular-weight RNA from polysaccharide-rich plant tissues. Anal. Biochem. 360: 318-320. http://dx.doi.org/10.1016/j.ab.2006.09.022 Chae MJ, Lee JS, Nam MH, Cho K, et al (2007). A rice dehydration-inducible SNF1-related protein kinase 2 phosphorylates an abscisic acid responsive element-binding factor and associates with ABA signaling. Plant Mol. Biol. 63: 151-169. http://dx.doi.org/10.1007/s11103-006-9079-x Chen L, Ren F, Zhou L, Wang QQ, et al (2012). The Brassica napus calcineurin B-Like 1/CBL-interacting protein kinase 6 (CBL1/CIPK6) component is involved in the plant response to abiotic stress and ABA signalling. J. Exp. Bot. 63: 6211-6222. http://dx.doi.org/10.1093/jxb/ers273 Chen L, Wang QQ, Zhou L, Ren F, et al (2013). Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 40: 4759-4767. http://dx.doi.org/10.1007/s11033-013-2572-9 Chen X, Gu Z, Xin D, Hao L, et al (2011). Identification and characterization of putative CIPK genes in maize. J. Genet. Genomics 38: 77-87. http://dx.doi.org/10.1016/j.jcg.2011.01.005 Chothia C, Gough J, Vogel C, Teichmann SA, et al (2003). Evolution of the protein repertoire. Science 300: 1701-1703. http://dx.doi.org/10.1126/science.1085371 Flagel LE, Wendel JF, et al (2009). Gene duplication and evolutionary novelty in plants. New Phytol. 183: 557-564. http://dx.doi.org/10.1111/j.1469-8137.2009.02923.x Halfter U, Ishitani M, Zhu JK, et al (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97: 3735-3740. http://dx.doi.org/10.1073/pnas.97.7.3735 Harper JF, et al (2001). Dissecting calcium oscillators in plant cells. Trends Plant Sci. 6: 395-397. http://dx.doi.org/10.1016/S1360-1385(01)02023-4 He DH, Lei ZP, Tang BS, Xing HY, et al (2015). Identification and analysis of the TIFY gene family in Gossypium raimondii. Genet. Mol. Res. 14: 10119-10138. http://dx.doi.org/10.4238/2015.August.21.19 He L, Yang X, Wang L, Zhu L, et al (2013). Molecular cloning and functional characterization of a novel cotton CBL-interacting protein kinase gene (GhCIPK6) reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Biochem. Biophys. Res. Commun. 435: 209-215. http://dx.doi.org/10.1016/j.bbrc.2013.04.080 Huang C, Ding S, Zhang H, Du H, et al (2011). CIPK7 is involved in cold response by interacting with CBL1 in Arabidopsis thaliana. Plant Sci. 181: 57-64. http://dx.doi.org/10.1016/j.plantsci.2011.03.011 Huertas R, Olías R, Eljakaoui Z, Gálvez FJ, et al (2012). Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ. 35: 1467-1482. http://dx.doi.org/10.1111/j.1365-3040.2012.02504.x Iqbal K, Azhar FM, Khan IA, et al, Ehsan-Ullah (2011). Variability for Drought Tolerance in Cotton (Gossypium hirsutum) and its Genetic Basis. Int. J. Agric. Biol. 13: 61-66. Kolukisaoglu U, Weinl S, Blazevic D, Batistic O, et al (2004). Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks. Plant Physiol. 134: 43-58. http://dx.doi.org/10.1104/pp.103.033068 Lecharny A, Boudet N, Gy I, Aubourg S, et al (2003). Introns in, introns out in plant gene families: a genomic approach of the dynamics of gene structure. J. Struct. Funct. Genomics 3: 111-116. http://dx.doi.org/10.1023/A:1022614001371 Li F, Fan G, Wang K, Sun F, et al (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat. Genet. 46: 567-572. http://dx.doi.org/10.1038/ng.2987 Li LB, Zhang YR, Liu KC, Ni ZF, et al (2010). Identification and Bioinformatics Analysis of SnRK2 and CIPK Family Genes in Sorghum. Agric. Sci. China 9: 19-30. http://dx.doi.org/10.1016/S1671-2927(09)60063-8 Long M, Rosenberg C, Gilbert W, et al (1995). Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92: 12495-12499. http://dx.doi.org/10.1073/pnas.92.26.12495 Mahajan S, Sopory SK, Tuteja N, et al (2006). Cloning and characterization of CBL-CIPK signalling components from a legume (Pisum sativum). FEBS J. 273: 907-925. http://dx.doi.org/10.1111/j.1742-4658.2006.05111.x Mortazavi A, Williams BA, McCue K, Schaeffer L, et al (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5: 621-628. http://dx.doi.org/10.1038/nmeth.1226 Pandey GK, Cheong YH, Kim BG, Grant JJ, et al (2007). CIPK9: a calcium sensor-interacting protein kinase required for low-potassium tolerance in Arabidopsis. Cell Res. 17: 411-421. http://dx.doi.org/10.1038/cr.2007.39 Paterson AH, Wendel JF, Gundlach H, Guo H, et al (2012). Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492: 423-427. http://dx.doi.org/10.1038/nature11798 Roy SJ, Huang W, Wang XJ, Evrard A, et al (2013). A novel protein kinase involved in Na(+) exclusion revealed from positional cloning. Plant Cell Environ. 36: 553-568. http://dx.doi.org/10.1111/j.1365-3040.2012.02595.x Sanders D, Pelloux J, Brownlee C, Harper JF, et al (2002). Calcium at the crossroads of signaling. Plant Cell 14 (Suppl): S401-S417. Schauser L, Wieloch W, Stougaard J, et al (2005). Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J. Mol. Evol. 60: 229-237. http://dx.doi.org/10.1007/s00239-004-0144-2 Schwachtje J, Minchin PEH, Jahnke S, van Dongen JT, et al (2006). SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots. Proc. Natl. Acad. Sci. USA 103: 12935-12940. http://dx.doi.org/10.1073/pnas.0602316103 Tang RJ, Liu H, Bao Y, Lv QD, et al (2010). The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74: 367-380. http://dx.doi.org/10.1007/s11103-010-9680-x Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D, et al (2009). CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 58: 778-790. http://dx.doi.org/10.1111/j.1365-313X.2009.03812.x Wang K, Wang Z, Li F, Ye W, et al (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 44: 1098-1103. http://dx.doi.org/10.1038/ng.2371 Wang QQ, Liu F, Chen XS, Ma XJ, et al (2010). Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96: 369-376. http://dx.doi.org/10.1016/j.ygeno.2010.08.009 Wei KF, Wang YM, Xie DX, et al (2014). Identification and expression profile analysis of the protein kinase gene superfamily in maize development. Mol. Breed. 33: 155-172. http://dx.doi.org/10.1007/s11032-013-9941-x Weinl S, Kudla J, et al (2009). The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol. 184: 517-528. http://dx.doi.org/10.1111/j.1469-8137.2009.02938.x Xiang Y, Huang Y, Xiong L, et al (2007). Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144: 1416-1428. http://dx.doi.org/10.1104/pp.107.101295 Xu J, Li HD, Chen LQ, Wang Y, et al (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125: 1347-1360. http://dx.doi.org/10.1016/j.cell.2006.06.011 Yin Z, Wang J, Wang D, Fan W, et al (2013). The MAPKKK gene family in Gossypium raimondii: genome-wide identification, classification and expression analysis. Int. J. Mol. Sci. 14: 18740-18757. http://dx.doi.org/10.3390/ijms140918740
“Molecular characterization of the gene checkpoint homolog 1 in Daphnia carinata during different reproductive phases”, vol. 15, p. -, 2016.
, , , “Association between the interleukin-6-174 G/C polymorphism and risk of ischemic stroke: a meta-analysis”, vol. 14, pp. 13076-13083, 2015.
, “Hypoxia-inducible factor-1α expression in the different stages of rat thromboangiitis obliterans”, vol. 14, pp. 6715-6722, 2015.
, ,