Publications
Found 14 results
Filters: Author is W. Beçak [Clear All Filters]
“Bos taurus papillomavirus activity in peripheral blood mononuclear cells: demonstrating a productive infection”, vol. 14, pp. 16712-16727, 2015.
, “Hyperproliferative action of bovine papillomavirus: genetic and histopathological aspects”, vol. 14, pp. 12942-12954, 2015.
, , “Bovine papillomavirus in beef cattle: first description of BPV-12 and putative type BAPV8 in Brazil”, vol. 13, pp. 5644-5653, 2014.
, , “Expression of the bovine papillomavirus type 1, 2 and 4 L1 genes in the yeast Pichia pastoris”, vol. 11, pp. 2598-2607, 2012.
,
Aires KA, Cianciarullo AM, Carneiro SM, Villa LL, et al. (2006). Production of human papillomavirus type 16 L1 virus-like particles by recombinant Lactobacillus casei cells. Appl. Environ. Microbiol. 72: 745-752.
http://dx.doi.org/10.1128/AEM.72.1.745-752.2006
PMid:16391114 PMCid:1352212
Bazan SB, de Alencar Muniz CA, Aires KA, Cianciarullo AM, et al. (2009). Expression and characterization of HPV-16 L1 capsid protein in Pichia pastoris. Arch. Virol. 154: 1609-1617.
http://dx.doi.org/10.1007/s00705-009-0484-8
PMid:19756360
Boettner M, Steffens C, von Mering C, Bork P, et al. (2007). Sequence-based factors influencing the expression of heterologous genes in the yeast Pichia pastoris-A comparative view on 79 human genes. J. Biotechnol. 130: 1-10.
http://dx.doi.org/10.1016/j.jbiotec.2007.02.019
PMid:17389146
Bogaert L, Martens A, Van Poucke M, Ducatelle R, et al. (2008). High prevalence of bovine papillomaviral DNA in the normal skin of equine sarcoid-affected and healthy horses. Vet. Microbiol. 129: 58-68.
http://dx.doi.org/10.1016/j.vetmic.2007.11.008
PMid:18093754
Borzacchiello G and Roperto F (2008). Bovine papillomaviruses, papillomas and cancer in cattle. Vet. Res. 39: 45.
http://dx.doi.org/10.1051/vetres:2008022
PMid:18479666
Campo MS (2002). Animal models of papillomavirus pathogenesis. Virus Res. 89: 249-261.
http://dx.doi.org/10.1016/S0168-1702(02)00193-4
Campo MS (2006). Bovine papillomavirus: Old System, New Lessons? In: Papillomavirus Biology: From Natural History to Vaccine and Beyond (Campo MS, ed.). Caister Academic Press, Wymondham.
Cereghino GP, Cereghino JL, Ilgen C and Cregg JM (2002). Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr. Opin. Biotechnol. 13: 329-332.
http://dx.doi.org/10.1016/S0958-1669(02)00330-0
Chambers G, Ellsmore VA, O'Brien PM, Reid SW, et al. (2003). Association of bovine papillomavirus with the equine sarcoid. J. Gen. Virol. 84: 1055-1062.
http://dx.doi.org/10.1099/vir.0.18947-0
PMid:12692268
Daly R and Hearn MT (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J. Mol. Recognit. 18: 119-138.
http://dx.doi.org/10.1002/jmr.687
PMid:15565717
Dummer LA, Conceicao FR, Nizoli LQ, de Moraes CM, et al. (2009). Cloning and expression of a truncated form of envelope glycoprotein D of Bovine herpesvirus type 5 in methylotrophic yeast Pichia pastoris. J. Virol. Methods 161: 84-90.
http://dx.doi.org/10.1016/j.jviromet.2009.05.022
PMid:19501621
Dupuy C, Buzoni-Gatel D, Touze A, Bout D, et al. (1999). Nasal immunization of mice with human papillomavirus type 16 (HPV-16) virus-like particles or with the HPV-16 L1 gene elicits specific cytotoxic T lymphocytes in vaginal draining lymph nodes. J. Virol. 73: 9063-9071.
PMid:10516012 PMCid:112938
Haas J, Park EC and Seed B (1996). Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr. Biol. 6: 315-324.
http://dx.doi.org/10.1016/S0960-9822(02)00482-7
Kirnbauer R, Booy F, Cheng N, Lowy DR, et al. (1992). Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. U. S. A. 89: 12180-12184.
http://dx.doi.org/10.1073/pnas.89.24.12180
PMid:1334560 PMCid:50722
Kirnbauer R, Chandrachud LM, O'Neil BW, Wagner ER, et al. (1996). Virus-like particles of bovine papillomavirus type 4 in prophylactic and therapeutic immunization. Virology 219: 37-44.
http://dx.doi.org/10.1006/viro.1996.0220
PMid:8623552
Kotzé L, Smith JJ, den Haan R and van Zyl WH (2011). Expression of human papillomavirus type 16 (HPV16) L1 protein in Pichia pastoris. Afr. J. Biotechnol. 10: 214-219.
Leal AM, Ferraz OP, Carvalho C, Freitas AC, et al. (2003). Quercetin induces structural chromosomal aberrations and uncommon rearrangements in bovine cells transformed by the E7 protein of bovine papillomavirus type 4. Vet. Comp. Oncol. 1: 15-21.
http://dx.doi.org/10.1046/j.1476-5829.2003.00008.x
PMid:19379326
Liu HL, Li WS, Lei T, Zheng J, et al. (2005). Expression of human papillomavirus type 16 L1 protein in transgenic tobacco plants. Acta Biochim. Biophys. Sin. 37: 153-158.
Macauley-Patrick S, Fazenda ML, McNeil B and Harvey LM (2005). Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249-270.
http://dx.doi.org/10.1002/yea.1208
PMid:15704221
Modis Y, Trus BL and Harrison SC (2002). Atomic model of the papillomavirus capsid. EMBO J. 21: 4754-4762.
http://dx.doi.org/10.1093/emboj/cdf494
PMid:12234916 PMCid:126290
Nasir L and Campo MS (2008). Bovine papillomaviruses: their role in the aetiology of cutaneous tumours of bovids and equids. Vet. Dermatol. 19: 243-254.
http://dx.doi.org/10.1111/j.1365-3164.2008.00683.x
PMid:18927950
Palker TJ, Monteiro JM, Martin MM, Kakareka C, et al. (2001). Antibody, cytokine and cytotoxic T lymphocyte responses in chimpanzees immunized with human papillomavirus virus-like particles. Vaccine 19: 3733-3743.
http://dx.doi.org/10.1016/S0264-410X(01)00093-7
Park MA, Kim HJ and Kim HJ (2008). Optimum conditions for production and purification of human papillomavirus type 16 L1 protein from Saccharomyces cerevisiae. Protein Expr. Purif. 59: 175-181.
http://dx.doi.org/10.1016/j.pep.2008.01.021
PMid:18343683
Romanos M (1995). Advances in the use of Pichia pastoris for high-level gene expression. Curr. Opin. Biotechnol. 6: 527-533.
http://dx.doi.org/10.1016/0958-1669(95)80087-5
Sambrook J, Fritsch EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.
Scorer CA, Buckholz RG, Clare JJ and Romanos MA (1993). The intracellular production and secretion of HIV-1 envelope protein in the methylotrophic yeast Pichia pastoris. Gene 136: 111-119.
http://dx.doi.org/10.1016/0378-1119(93)90454-B
Sinclair G and Choy FY (2002). Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast, Pichia pastoris. Protein Expr. Purif. 26: 96-105.
http://dx.doi.org/10.1016/S1046-5928(02)00526-0
Yu X-W, Wang L-L and Xu Y (2009). Rhizopus chinensis lipase: Gene cloning, expression in Pichia pastoris and properties. J. Mol. Catal. B Enzym. 57: 304-311.
http://dx.doi.org/10.1016/j.molcatb.2008.10.002
Zhou J, Liu WJ, Peng SW, Sun XY, et al. (1999). Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J. Virol. 73: 4972-4982.
PMid:10233959 PMCid:112541
zur Hausen H (2002). Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2: 342-350.
http://dx.doi.org/10.1038/nrc798
PMid:12044010
“Frequency of human papillomavirus types 16, 18, 31, and 33 and sites of cervical lesions in gynecological patients from Recife, Brazil”, vol. 11, pp. 462-466, 2012.
, Ault KA (2006). Epidemiology and natural history of human papillomavirus infections in the female genital tract. Infect. Dis. Obstet. Gynecol. 2006: 1-5.
http://dx.doi.org/10.1155/IDOG/2006/40470
Baldez da Silva MF, Chagas BS, Guimaraes V, Katz LM, et al. (2009). HPV31 and HPV33 incidence in cervical samples from women in Recife, Brazil. Genet. Mol. Res. 8: 1437-1443.
http://dx.doi.org/10.4238/vol8-4gmr677
PMid:20013657
Broomall EM, Reynolds SM and Jacobson RM (2010). Epidemiology, clinical manifestations, and recent advances in vaccination against human papillomavirus. Postgrad. Med. 122: 121-129.
http://dx.doi.org/10.3810/pgm.2010.03.2129
PMid:20203463
Castro TM, Peixoto PG, Bussoloti IF, Nascimento VX, et al. (2009). Detecção de HPV na mucosa oral e genital pela técnica PCR em mulheres com diagnóstico histopatológico positivo para HPV genital. Rev. Bras. Otorrinolaringol. 75: 167-171.
http://dx.doi.org/10.1590/S0034-72992009000200002
PMid:19575099
Chaturvedi AK (2010). Beyond cervical cancer: burden of other HPV-related cancers among men and women. J. Adolesc. Health 46: S20-S26.
http://dx.doi.org/10.1016/j.jadohealth.2010.01.016
PMid:20307840
Derchain SFM and Sarian LOZ (2007). Vacinas profiláticas para o HPV. Rev. Bras. Ginecol. Obstet. 29: 281-284.
http://dx.doi.org/10.1590/S0100-72032007000600001
Giuliano A and Palefsky J (2009). Quadrivalent HPV Vaccine Efficacy Against Male Genital Disease and Infection. In: 25th International Papillomavirus Conference Clinical and Educational Workshop, Malmö.
Karlsen F, Kalantari M, Jenkins A, Pettersen E, et al. (1996). Use of multiple PCR primer sets for optimal detection of human papillomavirus. J. Clin. Microbiol. 34: 2095-2100.
PMid:8862564 PMCid:229196
Lorenzato F, Ho L, Terry G, Singer A, et al. (2000). The use of human papillomavirus typing in detection of cervical neoplasia in Recife (Brazil). Int. J. Gynecol. Cancer 10: 143-150.
http://dx.doi.org/10.1046/j.1525-1438.2000.00007.x
PMid:11240666
Muñoz N, Bosch FX, de Sanjosé S, Herrero R, et al. (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348: 518-527.
http://dx.doi.org/10.1056/NEJMoa021641
PMid:12571259
Park RB and Androphy EJ (2002). Genetic analysis of high-risk E6 in episomal maintenance of human papillomavirus genomes in primary human keratinocytes. J. Virol. 76: 11359-11364.
http://dx.doi.org/10.1128/JVI.76.22.11359-11364.2002
PMid:12388696 PMCid:136782
Rama CH, Roteli-Martins CM, Derchain SFM, Longatto-Filho A, et al. (2008a). Prevalência do HPV em mulheres rastreadas para o câncer cervical. Rev. Saúde Pública 42: 123-130.
http://dx.doi.org/10.1590/S0034-89102008000100016
Rama CH, Roteli-Martins CM, Derchain SFM, Longato-Filho A, et al. (2008b). Rastreamento anterior para câncer de colo uterino em mulheres com alterações citológicas ou histológicas. Rev. Saúde Pública 42: 411-419.
http://dx.doi.org/10.1590/S0034-89102008000300004
Rambout L, Hopkins L, Hutton B and Fergusson D (2007). Prophylactic vaccination against human papillomavirus infection and disease in women: a systematic review of randomized controlled trials. CMAJ 177: 469-479.
http://dx.doi.org/10.1503/cmaj.070948
PMid:17671238 PMCid:1950172
“Human papillomavirus infection in Brazilian women with normal cervical cytology”, vol. 11, pp. 1752-1761, 2012.
,
Alonso-Amelot ME and Avendano M (2002). Human carcinogenesis and bracken fern: a review of the evidence. Curr. Med. Chem. 9: 675-686.
http://dx.doi.org/10.2174/0929867023370743
PMid:11945131
Atalah ES, Urteaga CR, Rebolledo AA and Villegas RA (2001). Alimentación, tabaquismo e historia reproductiva como factores de riesgo del cancer de cuello del útero. Rev. Med. Chile 129: 597-603.
PMid:11510198
Bauer HM, Hildesheim A, Schiffman MH, Glass AG, et al. (1993). Determinants of genital human papillomavirus infection in low-risk women in Portland, Oregon. Sex. Transm. Dis. 20: 274-278.
http://dx.doi.org/10.1097/00007435-199309000-00007
PMid:8235925
Bernard HU, Chan SY, Manos MM, Ong CK, et al. (1994). Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms. J. Infect. Dis. 170: 1077-1085.
http://dx.doi.org/10.1093/infdis/170.5.1077
PMid:7963696
Bonnez W (2007). Human papillomavirus vaccine-recent results and future developments. Curr. Opin. Pharmacol. 7: 470-477.
http://dx.doi.org/10.1016/j.coph.2007.07.001
PMid:17692568
Burk RD, Kelly P, Feldman J, Bromberg J, et al. (1996). Declining prevalence of cervicovaginal human papillomavirus infection with age is independent of other risk factors. Sex. Transm. Dis. 23: 333-341.
http://dx.doi.org/10.1097/00007435-199607000-00013
PMid:8836027
Campo MS and Roden RB (2010). Papillomavirus prophylactic vaccines: established successes, new approaches. J. Virol. 84: 1214-1220.
http://dx.doi.org/10.1128/JVI.01927-09
PMid:19906917 PMCid:2812340
Chaouki N, Bosch FX, Munoz N, Meijer CJ, et al. (1998). The viral origin of cervical cancer in Rabat, Morocco. Int. J. Cancer 75: 546-554.
http://dx.doi.org/10.1002/(SICI)1097-0215(19980209)75:4<546::AID-IJC9>3.0.CO;2-T
Chichareon S, Herrero R, Munoz N, Bosch FX, et al. (1998). Risk factors for cervical cancer in Thailand: a case-control study. J. Natl. Cancer Inst. 90: 50-57.
http://dx.doi.org/10.1093/jnci/90.1.50
PMid:9428783
Clifford GM, Gallus S, Herrero R, Munoz N, et al. (2005). Worldwide distribution of human papillomavirus types in cytologically normal women in the International Agency for Research on Cancer HPV prevalence surveys: a pooled analysis. Lancet 366: 991-998.
http://dx.doi.org/10.1016/S0140-6736(05)67069-9
Cuschieri KS, Cubie HA, Whitley MW, Seagar AL, et al. (2004). Multiple high risk HPV infections are common in cervical neoplasia and young women in a cervical screening population. J. Clin. Pathol. 57: 68-72.
http://dx.doi.org/10.1136/jcp.57.1.68
PMid:14693839 PMCid:1770158
Cuzick J, Beverley E, Ho L, Terry G, et al. (1999). HPV testing in primary screening of older women. Br. J. Cancer 81: 554-558.
http://dx.doi.org/10.1038/sj.bjc.6690730
PMid:10507785 PMCid:2362918
Cuzick J, Szarewski A, Cubie H, Hulman G, et al. (2003). Management of women who test positive for high-risk types of human papillomavirus: the HART study. Lancet 362: 1871-1876.
http://dx.doi.org/10.1016/S0140-6736(03)14955-0
de Roda Husman AM, Walboomers JM, Hopman E, Bleker OP, et al. (1995). HPV prevalence in cytomorphologically normal cervical scrapes of pregnant women as determined by PCR: the age-related pattern. J. Med. Virol. 46: 97-102.
http://dx.doi.org/10.1002/jmv.1890460203
PMid:7636509
de Sanjosé S, Diaz M, Castellsague X, Clifford G, et al. (2007). Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect. Dis. 7: 453-459.
http://dx.doi.org/10.1016/S1473-3099(07)70158-5
Figueroa JP, Ward E, Luthi TE, Vermund SH, et al. (1995). Prevalence of human papillomavirus among STD clinic attenders in Jamaica: association of younger age and increased sexual activity. Sex. Transm. Dis. 22: 114-118.
http://dx.doi.org/10.1097/00007435-199503000-00007
PMid:7624812
Franco EL, Villa LL, Sobrinho JP, Prado JM, et al. (1999). Epidemiology of acquisition and clearance of cervical human papillomavirus infection in women from a high-risk area for cervical cancer. J. Infect. Dis. 180: 1415-1423.
http://dx.doi.org/10.1086/315086
PMid:10515798
Herrero R, Brinton LA, Reeves WC, Brenes MM, et al. (1990). Sexual behavior, venereal diseases, hygiene practices, and invasive cervical cancer in a high-risk population. Cancer 65: 380-386.
http://dx.doi.org/10.1002/1097-0142(19900115)65:2<380::AID-CNCR2820650234>3.0.CO;2-9
Herrero R, Hildesheim A, Bratti C, Sherman ME, et al. (2000). Population-based study of human papillomavirus infection and cervical neoplasia in rural Costa Rica. J. Natl. Cancer Inst. 92: 464-474.
http://dx.doi.org/10.1093/jnci/92.6.464
PMid:10716964
Ho GY, Bierman R, Beardsley L, Chang CJ, et al. (1998). Natural history of cervicovaginal papillomavirus infection in young women. N. Engl. J. Med. 338: 423-428.
http://dx.doi.org/10.1056/NEJM199802123380703
PMid:9459645
Jacobs MV, Walboomers JM, Snijders PJ, Voorhorst FJ, et al. (2000). Distribution of 37 mucosotropic HPV types in women with cytologically normal cervical smears: the age-related patterns for high-risk and low-risk types. Int. J. Cancer 87: 221-227.
http://dx.doi.org/10.1002/1097-0215(20000715)87:2<221::AID-IJC11>3.0.CO;2-2
Kjaer SK, van den Brule AJ, Bock JE, Poll PA, et al. (1997). Determinants for genital human papillomavirus (HPV) infection in 1000 randomly chosen young Danish women with normal Pap smear: are there different risk profiles for oncogenic and nononcogenic HPV types? Cancer Epidemiol. Biomarkers Prev. 6: 799-805.
PMid:9332762
Lazcano-Ponce E, Herrero R, Munoz N, Cruz A, et al. (2001). Epidemiology of HPV infection among Mexican women with normal cervical cytology. Int. J. Cancer 91: 412-420.
http://dx.doi.org/10.1002/1097-0215(20010201)91:3<412::AID-IJC1071>3.0.CO;2-M
Marliére CA, Wathern P, Castro MC, O'Connor P, et al. (2002). Bracken fern (Pteridium aquilinum) ingestion and oesophageal and stomach cancer. IARC Sci. Publ. 156: 379-380.
PMid:12484211
Mejlhede N, Bonde J and Fomsgaard A (2009). High frequency of multiple HPV types in cervical specimens from Danish women. APMIS 117: 108-114.
http://dx.doi.org/10.1111/j.1600-0463.2008.00019.x
PMid:19239432
Melchers W, Ferrera A, Willemse D, Galama J, et al. (1994). Human papillomavirus and cervical cancer in Honduran women. Am. J. Trop. Med. Hyg. 50: 137-142.
PMid:8116803
Molano M, Posso H, Weiderpass E, van den Brule AJ, et al. (2002). Prevalence and determinants of HPV infection among Colombian women with normal cytology. Br. J. Cancer 87: 324-333.
http://dx.doi.org/10.1038/sj.bjc.6600442
PMid:12177803 PMCid:2364213
Moscicki AB, Palefsky J, Gonzales J and Schoolnik GK (1990). Human papillomavirus infection in sexually active adolescent females: prevalence and risk factors. Pediatr. Res. 28: 507-513.
http://dx.doi.org/10.1203/00006450-199011000-00018
PMid:2175024
Ngelangel C, Munoz N, Bosch FX, Limson GM, et al. (1998). Causes of cervical cancer in the Philippines: a case-control study. J. Natl. Cancer Inst. 90: 43-49.
http://dx.doi.org/10.1093/jnci/90.1.43
PMid:9428782
Qu WG, Jiang Y, Cruz Y, Chang CJ, et al. (1997). PCR detection of human papillomavirus: comparison between MY09/ MY11 and GP5_/GP6_ primer systems. J. Clin. Microbiol. 35: 1304-1310.
PMid:9163434 PMCid:229739
Recouso RC, Stocco dos Santos RC, Freitas R, Santos RC, et al. (2003). Clastogenic effect of bracken fern (Pteridium aquilinum v. arachnoideum) diet in peripheral lymphocytes of human consumers: preliminary data. Vet. Comp. Oncol. 1: 22-29.
http://dx.doi.org/10.1046/j.1476-5829.2003.00006.x
PMid:19379327
Reeves WC, Brinton LA, Garcia M, Brenes MM, et al. (1989). Human papillomavirus infection and cervical cancer in Latin America. N. Engl. J. Med. 320: 1437-1441.
http://dx.doi.org/10.1056/NEJM198906013202201
PMid:2541336
Rolon PA, Smith JS, Munoz N, Klug SJ, et al. (2000). Human papillomavirus infection and invasive cervical cancer in Paraguay. Int. J. Cancer 85: 486-491.
http://dx.doi.org/10.1002/(SICI)1097-0215(20000215)85:4<486::AID-IJC7>3.0.CO;2-S
Scarinci IC, Garcia FA, Kobetz E, Partridge EE, et al. (2010). Cervical cancer prevention: new tools and old barriers. Cancer 116: 2531-2542.
PMid:20310056 PMCid:2876205
Schiffman MH and Burk RD (1997). Human Papillomaviruses. In: Viral Infection of Humans, Epidemiology and Control. Part III. Viral Infections and Malignant Diseases Plenum, New York, 983-1023.
Schiffman MH, Bauer HM, Lorincz AT, Manos MM, et al. (1991). Comparison of Southern blot hybridization and polymerase chain reaction methods for the detection of human papillomavirus DNA. J. Clin. Microbiol. 29: 573-577.
PMid:1645370 PMCid:269821
Solomon D and Nayar R (2005). Sistema Bethesda para Citopatologia Cervicovaginal. 2a ed. Revinter, Rio de Janeiro.
Tabora N, Bakkers JM, Quint WG, Massuger LF, et al. (2009). Human papillomavirus infection in Honduran women with normal cytology. Cancer Causes Control 20: 1663-1670.
http://dx.doi.org/10.1007/s10552-009-9414-z
PMid:19685147 PMCid:2767515
zur Hausen H (2009). Papillomaviruses in the causation of human cancers - a brief historical account. Virology 384: 260-265.
http://dx.doi.org/10.1016/j.virol.2008.11.046
PMid:19135222
“The kinin B2 receptor gene structure, product processing and expression in adult and fetal rats: evidence for gene evolution”, vol. 9. pp. 215-230, 2010.
, AbdAlla S, Godovac-Zimmermann J, Braun A, Roscher AA, et al. (1996). Structure of the bradykinin B2 receptors' amino terminus. Biochemistry 35: 7514-7519.
http://dx.doi.org/10.1021/bi9601060
Bachvarov DR, Saint-Jacques E, Larrivee JF, Levesque L, et al. (1995). Cloning and pharmacological characterization of the rabbit bradykinin B2 receptor. J. Pharmacol. Exp. Ther. 275: 1623-1630.
Bachvarov DR, Hess JF, Menke JG, Larrivee JF, et al. (1996). Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1). Genomics 33: 374-381.
http://dx.doi.org/10.1006/geno.1996.0213
Becak ML and Kobashi LS (2004). Evolution by polyploidy and gene regulation in Anura. Genet. Mol. Res. 3: 195-212.
Blair Hedges S and Kumar S (2003). Genomic clocks and evolutionary timescales. Trends Genet. 19: 200-206.
http://dx.doi.org/10.1016/S0168-9525(03)00053-2
Bromée T, Conlon JM and Larhammar D (2005). Bradykinin receptors in the zebrafish (Danio rerio). Ann. N. Y. Acad. Sci. 1040: 246-248.
http://dx.doi.org/10.1196/annals.1327.034
Bromée T, Venkatesh B, Brenner S, Postlethwait JH, et al. (2006). Uneven evolutionary rates of bradykinin B1 and B2 receptors in vertebrate lineages. Gene 373: 100-108.
http://dx.doi.org/10.1016/j.gene.2006.01.017
Caous CA, Balan A and Lindsey CJ (2004). Bradykinin microinjection in the paratrigeminal nucleus triggers neuronal discharge in the rat rostroventrolateral reticular nucleus. Can. J. Physiol. Pharmacol. 82: 485-492.
http://dx.doi.org/10.1139/y04-088
Couture R and Lindsey CJ (2000). Brain Kallikrein-Kinin System: from Receptors to Neuronal Pathways and Physiological Functions. In: Handbook of Chemical Neuroanatomy: Peptide Receptors Part I (Quirion R, Björklund A and Hökfelt T, eds.), Chapter 7. Elsevier Science Ltd., Amsterdam, 16: 241-300.
de Sousa Buck H, Ongali B, Thibault G, Lindsey CJ, et al. (2002). Autoradiographic detection of kinin receptors in the human medulla of control, hypertensive, and diabetic donors. Can. J. Physiol. Pharmacol. 80: 249-257.
http://dx.doi.org/10.1139/y02-050
Eggerickx D, Raspe E, Bertrand D, Vassart G, et al. (1992). Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene. Biochem. Biophys. Res. Commun. 187: 1306-1313.
http://dx.doi.org/10.1016/0006-291X(92)90445-Q
Farmer SG, Powell SJ, Wilkins DE and Graham A (1998). Cloning, sequencing and functional expression of a guinea pig lung bradykinin B2 receptor. Eur. J. Pharmacol. 346: 291-298.
http://dx.doi.org/10.1016/S0014-2999(98)00024-7
Hansen JL, Hansen JT, Speerschneider T, Lyngso C, et al. (2009). Lack of evidence for AT1R/B2R heterodimerization in COS-7, HEK293, and NIH3T3 cells: how common is the AT1R/B2R heterodimer? J. Biol. Chem. 284: 1831-1839.
http://dx.doi.org/10.1074/jbc.M804607200
Hess JF, Borkowski JA, Young GS, Strader CD, et al. (1992). Cloning and pharmacological characterization of a human bradykinin (BK-2) receptor. Biochem. Biophys. Res. Commun. 184: 260-268.
http://dx.doi.org/10.1016/0006-291X(92)91187-U
Hess JF, Hey PJ, Chen TB, O'Brien J, et al. (2001). Molecular cloning and pharmacological characterization of the canine B1 and B2 bradykinin receptors. Biol. Chem. 382: 123-129.
http://dx.doi.org/10.1515/BC.2001.018
Holland AM, Findlay JK and Clements JA (2001). Kallikrein gene expression in the gonadotrophin-stimulated rat ovary. J. Endocrinol. 170: 243-250.
http://dx.doi.org/10.1677/joe.0.1700243
Jones C, Phillips E, Davis C, Arbuckle J, et al. (1999). Molecular characterisation of cloned bradykinin B1 receptors from rat and human. Eur. J. Pharmacol. 374: 423-433.
http://dx.doi.org/10.1016/S0014-2999(99)00315-5
Kammerer S, Braun A, Arnold N and Roscher AA (1995). The human bradykinin B2 receptor gene: full length cDNA, genomic organization and identification of the regulatory region. Biochem. Biophys. Res. Commun. 211: 226-233.
http://dx.doi.org/10.1006/bbrc.1995.1800
Kumar J, Schuck P, Jin R and Mayer ML (2009). The N-terminal domain of GluR6-subtype glutamate receptor ion channels. Nat. Struct. Mol. Biol. 16: 631-638.
http://dx.doi.org/10.1038/nsmb.1613
Kumar S and Hedges SB (1998). A molecular timescale for vertebrate evolution. Nature 392: 917-920.
http://dx.doi.org/10.1038/31927
Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ, et al. (2005). International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 57: 27-77.
http://dx.doi.org/10.1124/pr.57.1.2
Lindsey CJ, Bendhack LM and Paiva AC (1987). Effects of teprotide, captopril and enalaprilat on arterial wall kininase and angiotensin converting activity. J. Hypertens. (Suppl 5): S71-S76.
Lindsey CJ, Buck HS, Fior-Chadi DR and Lapa RC (1997). Pressor effect mediated by bradykinin in the paratrigeminal nucleus of the rat. J. Physiol. 502 (Pt 1): 119-129.
http://dx.doi.org/10.1111/j.1469-7793.1997.119bl.x
Lungu C, Dias JP, Franca CE, Ongali B, et al. (2007). Involvement of kinin B1 receptor and oxidative stress in sensory abnormalities and arterial hypertension in an experimental rat model of insulin resistance. Neuropeptides 41: 375-387.
http://dx.doi.org/10.1016/j.npep.2007.09.005
Ma JX, Wang DZ, Ward DC, Chen L, et al. (1994a). Structure and chromosomal localization of the gene (BDKRB2) encoding human bradykinin B2 receptor. Genomics 23: 362-369.
http://dx.doi.org/10.1006/geno.1994.1512
Ma JX, Wang DZ, Chao L and Chao J (1994b). Cloning, sequence analysis and expression of the gene encoding the mouse bradykinin B2 receptor. Gene 149: 283-288.
http://dx.doi.org/10.1016/0378-1119(94)90162-7
MacNeil T, Bierilo KK, Menke JG and Hess JF (1995). Cloning and pharmacological characterization of a rabbit bradykinin B1 receptor. Biochim. Biophys. Acta 1264: 223-228.
http://dx.doi.org/10.1016/0167-4781(95)00152-7
Martins AH, Alves JM, Trujillo CA, Schwindt TT, et al. (2008). Kinin-B2 receptor expression and activity during differentiation of embryonic rat neurospheres. Cytometry A 73: 361-368.
http://dx.doi.org/10.1002/cyto.a.20519
McEachern AE, Shelton ER, Bhakta S, Obernolte R, et al. (1991). Expression cloning of a rat B2 bradykinin receptor. Proc. Natl. Acad. Sci. U. S. A. 88: 7724-7728.
http://dx.doi.org/10.1073/pnas.88.17.7724
McIntyre P, Phillips E, Skidmore E, Brown M, et al. (1993). Cloned murine bradykinin receptor exhibits a mixed B1 and B2 pharmacological selectivity. Mol. Pharmacol. 44: 346-355.
Medeiros R, Cabrini DA, Ferreira J, Fernandes ES, et al. (2004). Bradykinin B1 receptor expression induced by tissue damage in the rat portal vein: a critical role for mitogen-activated protein kinase and nuclear factor-kappaB signaling pathways. Circ. Res. 94: 1375-1382.
http://dx.doi.org/10.1161/01.RES.0000128404.65887.08
Nekrutenko A and Li WH (2001). Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17: 619-621.
http://dx.doi.org/10.1016/S0168-9525(01)02445-3
Ni A, Chai KX, Chao L and Chao J (1998). Molecular cloning and expression of rat bradykinin B1 receptor. Biochim. Biophys. Acta 1442: 177-185.
http://dx.doi.org/10.1016/S0167-4781(98)00163-8
Okamoto K, Aoki K, Nosaka S and Fukushima M (1964). Cardiovascular diseases in the spontaneously hypertensive rat. Jpn. Circ. J. 28: 943-952.
http://dx.doi.org/10.1253/jcj.28.943
Page NM (2006). Characterization of the gene structures, precursor processing and pharmacology of the endokinin peptides. Vascul. Pharmacol. 45: 200-208.
http://dx.doi.org/10.1016/j.vph.2005.08.028
Park J, Freedman R, Bach C, Yee C, et al. (1994). Bradykinin-B2 receptors in humans and rats: cDNA structures, gene structures, possible alternative splicing, and homology searching for subtypes. Braz. J. Med. Biol. Res. 27: 1707-1724.
Pesquero JB, Lindsey CJ, Zeh K, Paiva AC, et al. (1994). Molecular structure and expression of rat bradykinin B2 receptor gene. Evidence for alternative splicing. J. Biol. Chem. 269: 26920-26925.
Pessini AC, Santos DR, Arantes EC and Souza GE (2006). Mediators involved in the febrile response induced by Tityus serrulatus scorpion venom in rats. Toxicon 48: 556-566.
http://dx.doi.org/10.1016/j.toxicon.2006.07.006
Powell SJ, Slynn G, Thomas C, Hopkins B, et al. (1993). Human bradykinin B2 receptor: nucleotide sequence analysis and assignment to chromosome 14. Genomics 15: 435-438.
http://dx.doi.org/10.1006/geno.1993.1084
Prowald A, Wemmert S, Biehl C, Storck S, et al. (2005). Interstitial loss and gain of sequences on chromosome 22 in meningiomas with normal karyotype. Int. J. Oncol. 26: 385-393.
Sivritas SH, Ploth DW and Fitzgibbon WR (2008). Blockade of renal medullary bradykinin B2 receptors increases tubular sodium reabsorption in rats fed a normal-salt diet. Am. J. Physiol. Renal Physiol. 295: F811-F817.
http://dx.doi.org/10.1152/ajprenal.90225.2008
Suzuki H, Iwamuro S, Ohnuma A, Coquet L, et al. (2007). Expression of genes encoding antimicrobial and bradykinin-related peptides in skin of the stream brown frog Rana sakuraii. Peptides 28: 505-514.
http://dx.doi.org/10.1016/j.peptides.2006.10.016
PMid:17174009
Suzuki T, Won KJ, Horiguchi K, Kinoshita K, et al. (2004). Muscularis inflammation and the loss of interstitial cells of Cajal in the endothelin ETB receptor null rat. Am. J. Physiol. Gastrointest. Liver Physiol. 287: G638-G646.
http://dx.doi.org/10.1152/ajpgi.00077.2004
PMid:15117676
Tang M, Cui M, Dong Q, Ren HM, et al. (2009). The bradykinin B2 receptor mediates hypoxia/reoxygenation induced neuronal cell apoptosis through the ERK1/2 pathway. Neurosci. Lett. 450: 40-44.
http://dx.doi.org/10.1016/j.neulet.2008.10.110
PMid:19027830
Wang DZ, Ma JX, Chao L and Chao J (1994). Molecular cloning and sequence analysis of rat bradykinin B2 receptor gene. Biochim. Biophys. Acta 1219: 171-174.
http://dx.doi.org/10.1016/0167-4781(94)90264-X
“Bovine papillomavirus DNA in milk, blood, urine, semen, and spermatozoa of bovine papillomavirus-infected animals”, vol. 8, pp. 310-318, 2009.
, “HPV31 and HPV33 incidence in cervical samples from women in Recife, Brazil”, vol. 8, pp. 1437-1443, 2009.
, , “Can established cultured papilloma cells harbor bovine papillomavirus?”, vol. 7, pp. 1119-1126, 2008.
, ,