Found 2 results
Filters: Author is Q.L. Zhu  [Clear All Filters]
X. H. Wang, Du, H. W., Guo, X. H., Wang, S. W., Zhou, R. B., Li, Y., Li, Z. B., Zhao, Y. S., and Zhu, Q. L., Rehmannia glutinosa oligosaccharide induces differentiation of bone marrow mesenchymal stem cells into cardiomyocyte-like cells, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.REFERENCESAntonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, Charokopos N, et al (2008). Cardiomyogenic potential of human adult bone marrow mesenchymal stem cells in vitro. Thorac. Cardiovasc. Surg. 56: 77-82. Borodovsky A, Salmasi V, Turcan S, Fabius AW, et al (2013). 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft. Oncotarget 4: 1737-1747. Chen XY, Wang RF, Liu B, et al (2015). An update on oligosaccharides and their esters from traditional chinese medicines: chemical structures and biological activities. Evid. Based Complement. Alternat. Med. 2015: 512675. De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, et al (2012). Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr. Mol. Med. 12: 574-591. Deans RJ, Moseley AB, et al (2000). Mesenchymal stem cells: biology and potential clinical uses. Exp. Hematol. 28: 875-884. Dey BR, Chung SS, Spitzer TR, Zheng H, et al (2010). Cardiac transplantation followed by dose-intensive melphalan and autologous stem-cell transplantation for light chain amyloidosis and heart failure. Transplantation 90: 905-911. Ge X, Bai C, Yang J, Lou G, et al (2013). Intratracheal transplantation of bone marrow-derived mesenchymal stem cells reduced airway inflammation and up-regulated CD4+CD25+ regulatory T cells in asthmatic mouse. Cell Biol. Int. 37: 675-686. Lai PK, To MH, Lau KM, Liu CL, et al (2012). Stachyose: One of the active fibroblast-proliferating components in the root of Rehmanniae Radix (dì huáng). J. Tradit. Complement. Med. 2: 227-234. Makino S, Fukuda K, Miyoshi S, Konishi F, et al (1999). Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest. 103: 697-705. Manferdini C, Maumus M, Gabusi E, Piacentini A, et al (2013). Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 65: 1271-1281. Nagaya N, Kitamura S, et al (2008). [Regenerative medicine for heart failure]. Nihon Rinsho 66: 978-983. Nagaya N, Kangawa K, Itoh T, Iwase T, et al (2005). Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation 112: 1128-1135. Park C, So HS, Kim SJ, Youn MJ, et al (2006). Samul extract protects against the H2O2-induced apoptosis of H9c2 cardiomyoblasts via activation of extracellular regulated kinases (Erk) 1/2. Am. J. Chin. Med. 34: 695-706. Park WH, Hong MY, Chung KH, Kim HM, et al (2005). Effects of traditional herbal medicine, Hwaotang, on atherosclerosis using the spontaneous familial hypercholesterolemia model, Kurosawa and Kusanagi-hypercholesterolemic rabbits and the venous thrombosis rats. Phytother. Res. 19: 846-853. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, et al (2008). The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell. Immunol. 251: 131-136. Richardson JD, Bertaso AG, Psaltis PJ, Frost L, et al (2013). Impact of timing and dose of mesenchymal stromal cell therapy in a preclinical model of acute myocardial infarction. J. Card. Fail. 19: 342-353. Selem SM, Kaushal S, Hare JM, et al (2013). Stem cell therapy for pediatric dilated cardiomyopathy. Curr. Cardiol. Rep. 15: 369. Tomita S, Li RK, Weisel RD, Mickle DA, et al (1999). Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100 (Suppl): II247-II256. Uccelli A, Moretta L, Pistoia V, et al (2006). Immunoregulatory function of mesenchymal stem cells. Eur. J. Immunol. 36: 2566-2573. Yokozawa T, Kim HY, Yamabe N, et al (2004). Amelioration of diabetic nephropathy by dried Rehmanniae Radix (Di Huang) extract. Am. J. Chin. Med. 32: 829-839. Yu HH, Kim YH, Jung SY, Shin MK, et al (2006a). Rehmannia glutinosa activates intracellular antioxidant enzyme systems in mouse auditory cells. Am. J. Chin. Med. 34: 1083-1093. Yu HH, Seo SJ, Kim YH, Lee HY, et al (2006b). Protective effect of Rehmannia glutinosa on the cisplatin-induced damage of HEI-OC1 auditory cells through scavenging free radicals. J. Ethnopharmacol. 107: 383-388. Yue WM, Liu W, Bi YW, He XP, et al (2008). Mesenchymal stem cells differentiate into an endothelial phenotype, reduce neointimal formation, and enhance endothelial function in a rat vein grafting model. Stem Cells Dev. 17: 785-793. Zhang Y, Wang Y, Wang L, Zhang Y, et al (2012). Effects of Rehmannia glutinosa oligosaccharide on human adipose-derived mesenchymal stem cells in vitro. Life Sci. 91: 1323-1327.