Publications

Found 3 results
Filters: Author is E.M. Merzetti  [Clear All Filters]
2016
E. M. Merzetti, Staveley, B. E., Merzetti, E. M., and Staveley, B. E., Altered expression of CG5961, a putative Drosophila melanogaster homologue of FBXO9, provides a new model of Parkinson disease, vol. 15, p. -, 2016.
E. M. Merzetti, Staveley, B. E., Merzetti, E. M., and Staveley, B. E., Altered expression of CG5961, a putative Drosophila melanogaster homologue of FBXO9, provides a new model of Parkinson disease, vol. 15, p. -, 2016.
E. M. Merzetti and Staveley, B. E., Identifying potential PARIS homologs in D. melanogaster, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSE.M. Merzetti received a Department of Biology Teaching Assistantship and a School of Graduate Studies Fellowship from the Memorial University of Newfoundland. B.E. Staveley received research support from the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant, the Parkinson Society Canada Pilot Project Regional Partnership Program with the Parkinson Society Quebec via Fond Saucier-Van Berkom-Parkinson Quebec, and the Parkinson Society Newfoundland and Labrador. Stocks obtained from the Vienna Drosophila Resource Center were used in this study. REFERENCESAltschul SF, Gish W, Miller W, Myers EW, et al (1990). Basic local alignment search tool. J. Mol. Biol. 215: 403-410. http://dx.doi.org/10.1016/S0022-2836(05)80360-2 Beckstead R, Ortiz JA, Sanchez C, Prokopenko SN, et al (2001). Bonus, a Drosophila homolog of TIF1 proteins, interacts with nuclear receptors and can inhibit betaFTZ-F1-dependent transcription. Mol. Cell 7: 753-765. http://dx.doi.org/10.1016/S1097-2765(01)00220-9 Beitz JM, et al (2014). Parkinson’s disease: a review. Front. Biosci. (Schol. Ed.) 6: 65-74. http://dx.doi.org/10.2741/S415 Chung HR, Schäfer U, Jäckle H, Böhm S, et al (2002). Genomic expansion and clustering of ZAD-containing C2H2 zinc-finger genes in Drosophila. EMBO Rep. 3: 1158-1162. http://dx.doi.org/10.1093/embo-reports/kvf243 Chung HR, Löhr U, Jäckle H, et al (2007). Lineage-specific expansion of the zinc finger associated domain ZAD. Mol. Biol. Evol. 24: 1934-1943. http://dx.doi.org/10.1093/molbev/msm121 Clark IE, Dodson MW, Jiang C, Cao JH, et al (2006). Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441: 1162-1166. http://dx.doi.org/10.1038/nature04779 D’Avino PP, Thummel CS, et al (1998). crooked legs encodes a family of zinc finger proteins required for leg morphogenesis and ecdysone-regulated gene expression during Drosophila metamorphosis. Development 125: 1733-1745. De Castro ESC, Gattiker A, Falquet L, Pagni M, et al. (2006). ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 34 (Web Server issue): W362-365. Eiyama A, Okamoto K, et al (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33: 95-101. http://dx.doi.org/10.1016/j.ceb.2015.01.002 Finn RD, Bateman A, Clements J, Coggill P, et al (2014). Pfam: the protein families database. Nucleic Acids Res. 42: D222-D230. http://dx.doi.org/10.1093/nar/gkt1223 Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, et al (1996). KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 10: 2067-2078. http://dx.doi.org/10.1101/gad.10.16.2067 Gleyzer N, Scarpulla RC, et al (2011). PGC-1-related coactivator (PRC), a sensor of metabolic stress, orchestrates a redox-sensitive program of inflammatory gene expression. J. Biol. Chem. 286: 39715-39725. http://dx.doi.org/10.1074/jbc.M111.291575 Greene JC, Whitworth AJ, Kuo I, Andrews LA, et al (2003). Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100: 4078-4083. http://dx.doi.org/10.1073/pnas.0737556100 Greene JC, Whitworth AJ, Andrews LA, Parker TJ, et al (2005). Genetic and genomic studies of Drosophila parkin mutants implicate oxidative stress and innate immune responses in pathogenesis. Hum. Mol. Genet. 14: 799-811. http://dx.doi.org/10.1093/hmg/ddi074 Guo M, et al (2012). Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2: 1-17. http://dx.doi.org/10.1101/cshperspect.a009944 Jauch R, Bourenkov GP, Chung HR, Urlaub H, et al (2003). The zinc finger-associated domain of the Drosophila transcription factor grauzone is a novel zinc-coordinating protein-protein interaction module. Structure 11: 1393-1402. http://dx.doi.org/10.1016/j.str.2003.09.015 Khetchoumian K, Teletin M, Mark M, Lerouge T, et al (2004). TIF1delta, a novel HP1-interacting member of the transcriptional intermediary factor 1 (TIF1) family expressed by elongating spermatids. J. Biol. Chem. 279: 48329-48341. http://dx.doi.org/10.1074/jbc.M404779200 Klockgether T, et al (2004). Parkinson’s disease: clinical aspects. Cell Tissue Res. 318: 115-120. http://dx.doi.org/10.1007/s00441-004-0975-6 Koh H, Chung J, et al (2010). PINK1 and Parkin to control mitochondria remodeling. Anat. Cell Biol. 43: 179-184. http://dx.doi.org/10.5115/acb.2010.43.3.179 Larkin MA, Blackshields G, Brown NP, Chenna R, et al (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 Le Douarin B, Zechel C, Garnier JM, Lutz Y, et al (1995). The N-terminal part of TIF1, a putative mediator of the ligand-dependent activation function (AF-2) of nuclear receptors, is fused to B-raf in the oncogenic protein T18. EMBO J. 14: 2020-2033. Lee S, Bang SM, Lee JW and Cho KS (2014). Evaluation of traditional medicines for neurodegenerative diseases using Drosophila models. J. Evid. Based Compl. Altern. Med. doi:http://dx.doi.org/10.1155/2014/967462. Lin JY, Yen SH, Shieh KR, Liang SL, et al (2000). Dopamine and 7-OH-DPAT may act on D(3) receptors to inhibit tuberoinfundibular dopaminergic neurons. Brain Res. Bull. 52: 567-572. http://dx.doi.org/10.1016/S0361-9230(00)00298-7 Merzetti EM, Staveley BE, et al (2015). spargel, the PGC-1α homologue, in models of Parkinson disease in Drosophila melanogaster. BMC Neurosci. 16: 70. http://dx.doi.org/10.1186/s12868-015-0210-2 Mishra M, Knust E, et al (2013). Analysis of the Drosophila compound eye with light and electron microscopy. Methods Mol. Biol. 935: 161-182. http://dx.doi.org/10.1007/978-1-62703-080-9_11 Mitchell N, Cranna N, Richardson H, Quinn L, et al (2008). The Ecdysone-inducible zinc-finger transcription factor Crol regulates Wg transcription and cell cycle progression in Drosophila. Development 135: 2707-2716. http://dx.doi.org/10.1242/dev.021766 Mitsui J, et al (2013). [Toward identification of susceptible genes for sporadic neurodegenerative disease]. Rinsho Shinkeigaku 53: 1336-1338. http://dx.doi.org/10.5692/clinicalneurol.53.1336 Narendra D, Tanaka A, Suen DF, Youle RJ, et al (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183: 795-803. http://dx.doi.org/10.1083/jcb.200809125 Palikaras K, Tavernarakis N, et al (2014). Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp. Gerontol. 56: 182-188. http://dx.doi.org/10.1016/j.exger.2014.01.021 Rowe GC, El-Khoury R, Patten IS, Rustin P, et al (2012). PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle. PLoS One 7: e41817. http://dx.doi.org/10.1371/journal.pone.0041817 Russell AP, Hesselink MK, Lo SK, Schrauwen P, et al (2005). Regulation of metabolic transcriptional co-activators and transcription factors with acute exercise. FASEB J. 19: 986-988. Ryan BJ, Hoek S, Fon EA, Wade-Martins R, et al (2015). Mitochondrial dysfunction and mitophagy in Parkinson’s: from familial to sporadic disease. Trends Biochem. Sci. 40: 200-210. http://dx.doi.org/10.1016/j.tibs.2015.02.003 Scarpulla RC, et al (2011). Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813: 1269-1278. http://dx.doi.org/10.1016/j.bbamcr.2010.09.019 Shin JH, Ko HS, Kang H, Lee Y, et al (2011). PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell 144: 689-702. http://dx.doi.org/10.1016/j.cell.2011.02.010 Tiefenböck SK, Baltzer C, Egli NA, Frei C, et al (2010). The Drosophila PGC-1 homologue Spargel coordinates mitochondrial activity to insulin signalling. EMBO J. 29: 171-183. http://dx.doi.org/10.1038/emboj.2009.330 Urrutia R, et al (2003). KRAB-containing zinc-finger repressor proteins. Genome Biol. 4: 231. http://dx.doi.org/10.1186/gb-2003-4-10-231 Watson PA, Reusch JE, McCune SA, Leinwand LA, et al (2007). Restoration of CREB function is linked to completion and stabilization of adaptive cardiac hypertrophy in response to exercise. Am. J. Physiol. Heart Circ. Physiol. 293: H246-H259. http://dx.doi.org/10.1152/ajpheart.00734.2006 West RJ, Furmston R, Williams CA, Elliott CJ, et al (2015). Neurophysiology of Drosophila models of Parkinson’s disease. Parkinsons Dis. 2015: 381281. http://dx.doi.org/10.1155/2015/381281 Whitworth AJ, Lee JR, Ho VM, Flick R, et al (2008). Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson’s disease factors Pink1 and Parkin. Dis. Model. Mech. 1: 168-174, discussion 173. http://dx.doi.org/10.1242/dmm.000109 Yang Y, Gehrke S, Imai Y, Huang Z, et al (2006). Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc. Natl. Acad. Sci. USA 103: 10793-10798. http://dx.doi.org/10.1073/pnas.0602493103