Publications

Found 5 results
Filters: Author is A. Morales-Trejo  [Clear All Filters]
2013
M. Cervantes-Ramírez, Mendez-Trujillo, V., Araiza-Piña, B. A., Barrera-Silva, M. A., González-Mendoza, D., and Morales-Trejo, A., Supplemental leucine and isoleucine affect expression of cationic amino acid transporters and myosin, serum concentration of amino acids, and growth performance of pigs, vol. 12, pp. 115-126, 2013.
AOAC (2006). Official Methods of Analysis. 18th edn. Association of Official Analytical Chemists, Arlington.   Brodsky IG, Suzara D, Hornberger TA, Goldspink P, et al. (2004). Isoenergetic dietary protein restriction decreases myosin heavy chain IIx fraction and myosin heavy chain production in humans. J. Nutr. 134: 328-334. PMid:14747668   Broer S (2008). Amino acid transport across mammalian intestinal and renal epithelia. Physiol. Rev. 88: 249-286. http://dx.doi.org/10.1152/physrev.00018.2006 PMid:18195088   Closs EI, Simon A, Vekony N and Rotmann A (2004). Plasma membrane transporters for arginine. J. Nutr. 134: 2752S-2759S. PMid:15465780   Czerwinski SM and Martin JM (1994). Effect of somatotropin on myosin expression in pigs. J. Anim. Sci. 72: 1204-1208. PMid:8056665   Dreyer HC, Drummond MJ, Pennings B, Fujita S, et al. (2008). Leucine-enriched essential amino acid and carbohydrate ingestion following resistance exercise enhances mTOR signaling and protein synthesis in human muscle. Am. J. Physiol. Endocrinol. Metab. 294: E392-E400. http://dx.doi.org/10.1152/ajpendo.00582.2007 PMid:18056791 PMCid:2706121   Edmonds MS and Baker DH (1987). Amino acid excesses for young pigs: effects of excess methionine, tryptophan, threonine or leucine. J. Anim. Sci. 64: 1664-1671. PMid:3110116   Fukasawa Y, Segawa H, Kim JY, Chairoungdua A, et al. (2000). Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral D- and L-amino acids. J. Biol. Chem. 275: 9690-9698. http://dx.doi.org/10.1074/jbc.275.13.9690 PMid:10734121   Gatnau R, Cain C, Drew M and Zimmerman D (1995). Mode of action of spray-dried porcine plasma in weanling pigs. J. Anim. Sci. 73: 82.   Gunawan AM, Park SK, Pleitner JM, Feliciano L, et al. (2007). Contractile protein content reflects myosin heavy-chain isoform gene expression. J. Anim. Sci. 85: 1247-1256. http://dx.doi.org/10.2527/jas.2006-511 PMid:17145975   Hagihira H, Lin EC, Samiy AH and Wilson TH (1961). Active transport of lysine, ornithine, arginine and cystine by the intestine. Biochem. Biophys. Res. Commun. 4: 478-481. http://dx.doi.org/10.1016/0006-291X(61)90312-6   Hatzoglou M, Fernandez J, Yaman I and Closs E (2004). Regulation of cationic amino acid transport: the story of the CAT-1 transporter. Annu. Rev. Nutr. 24: 377-399. http://dx.doi.org/10.1146/annurev.nutr.23.011702.073120 PMid:15459982   Hemmings KM, Parr T, Daniel ZC, Picard B, et al. (2009). Examination of myosin heavy chain isoform expression in ovine skeletal muscles. J. Anim. Sci. 87: 3915-3922. http://dx.doi.org/10.2527/jas.2009-2067 PMid:19684280   Henry Y, Duée PH and Rérat A (1976). Isoleucine requirement of the growing pig and leucine-isoleucine interrelationship. J. Anim. Sci. 42: 357-364. PMid:1262258   Jackson SC, Bryson JM, Wang H and Hurley WL (2000). Cellular uptake of valine by lactating porcine mammary tissue. J. Anim. Sci. 78: 2927-2932. PMid:11063318   Kakoki M, Kim HS, Arendshorst WJ and Mattson DL (2004). L-Arginine uptake affects nitric oxide production and blood flow in the renal medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287: R1478-R1485. http://dx.doi.org/10.1152/ajpregu.00386.2004 PMid:15319219   Langer S and Fuller MF (2000). Interactions among the branched-chain amino acids and their effects on methionine utilization in growing pigs: effects on nitrogen retention and amino acid utilization. Br. J. Nutr. 83: 43-48. http://dx.doi.org/10.1017/S0007114500000088 PMid:10703463   Lefaucheur L, Ecolan P, Plantard L and Gueguen N (2002). New insights into muscle fiber types in the pig. J. Histochem. Cytochem. 50: 719-730. http://dx.doi.org/10.1177/002215540205000513 PMid:11967283   Liao SF, Vanzant ES, Harmon DL, McLeod KR, et al. (2009). Ruminal and abomasal starch hydrolysate infusions selectively decrease the expression of cationic amino acid transporter mRNA by small intestinal epithelia of forage-fed beef steers. J. Dairy Sci. 92: 1124-1135. http://dx.doi.org/10.3168/jds.2008-1521 PMid:19233805   Maenz DD and Patience JF (1992). L-threonine transport in pig jejunal brush border membrane vesicles. Functional characterization of the unique system B in the intestinal epithelium. J. Biol. Chem. 267: 22079-22086. PMid:1429560   Majumder M, Yaman I, Gaccioli F, Zeenko VV, et al. (2009). The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol. Cell. Biol. 29: 2899-2912. http://dx.doi.org/10.1128/MCB.01774-08 PMid:19273590 PMCid:2682027   Matthews DE (2005). Observations of branched-chain amino acid administration in humans. J. Nutr. 135: 1580S-1584S. PMid:15930473 PMCid:2268017   Nair KS, Matthews DE, Welle SL and Braiman T (1992). Effect of leucine on amino acid and glucose metabolism in humans. Metabolism 41: 643-648. http://dx.doi.org/10.1016/0026-0495(92)90057-H   NRC (1998). Nutrient Requirements of Swine. 10th revised edn. National Academy Press, Washington.   Pineda M, Wagner CA, Broer A, Stehberger PA, et al. (2004). Cystinuria-specific rBAT(R365W) mutation reveals two translocation pathways in the amino acid transporter rBAT-b0,+AT. Biochem. J. 377: 665-674. http://dx.doi.org/10.1042/BJ20030956 PMid:14561219 PMCid:1223896   Rieu I, Balage M, Sornet C, Debras E, et al. (2007). Increased availability of leucine with leucine-rich whey proteins improves postprandial muscle protein synthesis in aging rats. Nutrition 23: 323-331. http://dx.doi.org/10.1016/j.nut.2006.12.013 PMid:17367997   Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.   SAS (2000). SAS/STAT User's Guide: Statistics. Release 6.03. SAS Institute Inc., Cary.   Silk DB, Grimble GK and Rees RG (1985). Protein digestion and amino acid and peptide absorption. Proc. Nutr. Soc. 44: 63-72. http://dx.doi.org/10.1079/PNS19850011 PMid:3885229   Steel RGD and Torrie JH (1980). Principles and Procedures of Statistics: A Biomedical Approach. 2nd edn. McGraw-Hill Book Co., New York.   Sunde J, Kiessling A, Higgs D and Opstvedt J (2003). Evaluation of feed protein quality by measuring plasma free amino acids in Atlantic salmon (Salmo salar L.) after dorsal aorta cannulation. Aquac. Nutr. 9: 351-360. http://dx.doi.org/10.1046/j.1365-2095.2003.00263.x   Taylor AJ, Cole DJA and Lewis D (1984). Amino acid requirements of growing pigs. 5. The interactions between isoleucine and leucine. Anim. Prod. 38: 257-261. http://dx.doi.org/10.1017/S0003356100002257   Torras-Llort M, Torrents D, Soriano-García JF, Gelpí JL, et al. (2001). Sequential amino acid exchange across b(0,+)-like system in chicken brush border jejunum. J. Membr. Biol. 180: 213-220. http://dx.doi.org/10.1007/s002320010072 PMid:11337893   Verhoeven S, Vanschoonbeek K, Verdijk LB, Koopman R, et al. (2009). Long-term leucine supplementation does not increase muscle mass or strength in healthy elderly men. Am. J. Clin. Nutr. 89: 1468-1475. http://dx.doi.org/10.3945/ajcn.2008.26668 PMid:19321567   Wiltafsky MK, Pfaffl MW and Roth FX (2010). The effects of branched-chain amino acid interactions on growth performance, blood metabolites, enzyme kinetics and transcriptomics in weaned pigs. Br. J. Nutr. 103: 964-976. http://dx.doi.org/10.1017/S0007114509992212 PMid:20196890   Yang J, Chi Y, Burkhardt BR, Guan Y, et al. (2010). Leucine metabolism in regulation of insulin secretion from pancreatic beta cells. Nutr. Rev. 68: 270-279. http://dx.doi.org/10.1111/j.1753-4887.2010.00282.x PMid:20500788 PMCid:2969169
2012
J. C. Vazquez-Angulo, Mendez-Trujillo, V., González-Mendoza, D., Morales-Trejo, A., Grimaldo-Juarez, O., and Cervantes-Díaz, L., A rapid and inexpensive method for isolation of total DNA from Trichoderma spp (Hypocreaceae), vol. 11. pp. 1379-1384, 2012.
Al-Samarrai TH and Schmid J (2000). A simple method for extraction of fungal genomic DNA. Lett. Appl. Microbiol. 30: 53-56. http://dx.doi.org/10.1046/j.1472-765x.2000.00664.x PMid:10728561   Gonzalez-Mendoza D, Moreno AQ and Zapata-Perez O (2008). An improved method for the isolation of total RNA from Avicennia germinans leaves. Z. Naturforsch. C 63: 124-126. PMid:18386500   Kubicek CP, Mach RL, Peterbauer CK and Lorito M (2001). Trichoderma: from genes to biocontrol. J. Plant Pathol. 83: 11-23.   Melo SC, Pungartnik C, Cascardo JC and Brendel M (2006). Rapid and efficient protocol for DNA extraction and molecular identification of the basidiomycete Crinipellis perniciosa. Genet. Mol. Res. 5: 851-855. PMid:17183493   Neir AM and Campana ME (2007). The peaceful resolution of U.S.-Mexican transboundary water disputes. EPSJ 2: 42- 48.   Padmalatha K and Prasad MNV (2006). Optimization of DNA isolation and PCR protocol for RAPD analysis of selected medicinal and aromatic plants of conservation concern from Peninsular India. Afr. J. Biotechnol. 5: 230-234.   Plaza GA, Upchurch R, Brigmon RL, Whitman WB, et al. (2004). Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Pol. J. Environ. Stud. 13: 315-318.
2010
D. González-Mendoza, Argumedo-Delira, R., Morales-Trejo, A., Pulido-Herrera, A., Cervantes-Díaz, L., Grimaldo-Juarez, O., and Alarcón, A., A rapid method for isolation of total DNA from pathogenic filamentous plant fungi, vol. 9, pp. 162-166, 2010.
Al-Samarrai TH and Schmid J (2000). A simple method for extraction of fungal genomic DNA. Lett. Appl. Microbiol. 30: 53-56. http://dx.doi.org/10.1046/j.1472-765x.2000.00664.x PMid:10728561   Alaey M, Naderi R, Vezvaei A, Khalighi A, et al. (2005). Comparing study between four different methods of genomic DNA extraction from Cyclamen persicum Mill. Int. J. Agric. Biol. 7: 882-884.   Bolano A, Stinchi S, Preziosi R, Bistoni F, et al. (2001). Rapid methods to extract DNA and RNA from Cryptococcus neoformans. FEMS Yeast Res. 1: 221-224. PMid:12702347   González-Mendoza D, Moreno AQ and Zapata-Pérez O (2008). An improved method for the isolation of total RNA from Avicennia germinans leaves. Z. Naturforsch. C. 63: 124-126. PMid:18386500   Liu D, Coloe S, Baird R and Pederson J (2000). Rapid mini-preparation of fungal DNA for PCR. J. Clin. Microbiol. 38: 471. PMid:10681211 PMCid:88759   Nasr Esfahani M and Ansari Pour B (2008). Differences in resistance in onion cultivars to pink root rot disease in Iran. J. Gen. Plant Pathol. 74: 46-52. http://dx.doi.org/10.1007/s10327-007-0070-4   Noor Adila AK, Farah Diba AB, Zamri Z, Wan Mohtar WY, et al. (2007). Comparison of methods for isolating high quality DNA and RNA from an oleaginous fungus Cunninghamella bainieri strain 2a1. Mal. J. Microbiol. 3: 7-13.   Pfaza GA, Upchurch R, Brigmon RL, Whitman WB, et al. (2004). Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Pol. J. Environ. Stud. 13: 315-318.   Quintana-Sierra ME, Robledo-Paz A, Santacruz-Varela A, Gutiérrez-Espinosa A, et al. (2005). Regeneración in vitro de plantas de cebolla (Allium cepa l.). [In vitro regeneration of onion (Allium cepa l.) plants]. Agrociencia 39: 647-655.   Raeder U and Broda P (1985). Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1: 17-20. http://dx.doi.org/10.1111/j.1472-765X.1985.tb01479.x   Sambrook J and Russel DW (2001). Molecular Cloning: a Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.   Sistema de Información Agropecuaria de Consulta (SIACON) (2006). Centro de Estadística Agropecuaria (C.E.A.). Versión 1.1. Available at [http://www.siap.sagarpa.gob.mx]. Accessed April 2008.