Found 1 results
Filters: Author is H.A. Mohamed  [Clear All Filters]
M. A. Mahmoud, Al-Othman, M. R., -El-Aziz, A., Metwaly, H. A., and Mohamed, H. A., Expression of genes encoding cellulolytic enzymes in some Aspergillus species, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSThe authors would like to extend their sincere appreciation to the Deanship of Scientific Research at king Saud University for its funding this research group (#RG-269). REFERENCESAl-Sheikh H, Watson AJ, Lacey GA, Punt PJ, et al (2004). Endoplasmic reticulum stress leads to the selective transcriptional downregulation of the glucoamylase gene in Aspergillus niger. Mol. Microbiol. 53: 1731-1742. Aro N, Pakula T, Penttilä M, et al (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol. Rev. 29: 719-739. Bak JS, et al (2015). Lignocellulose depolymerization occurs via an environmentally adapted metabolic cascades in the wood-rotting basidiomycete Phanerochaete chrysosporium. MicrobiologyOpen 4: 151-166. Caddick MX, Jones MG, van Tonder JM, Le Cordier H, et al (2006). Opposing signals differentially regulate transcript stability in Aspergillus nidulans. Mol. Microbiol. 62: 509-519. Dutt D, Kumar A, et al (2014). Optimization of cellulase production under solid-state fermentation by Aspergillus flavus (AT-2) and Aspergillus niger (AT-3) and its impact on stickies and ink particle size of sorted office paper. Cellul. Chem. Technol. 48: 285-298. Gao J, Weng H, Zhu D, Yuan M, et al (2008). Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour. Technol. 99: 7623-7629. Gehlot P, Purohit DK, Singh SK, et al (2011). Molecular diagnostics of human pathogenic Aspergillus species. Indian J. Biotechnol. 10: 207-211. Ghigo JM, et al (2003). Are there biofilm-specific physiological pathways beyond a reasonable doubt? Res. Microbiol. 154: 1-8. Gomathi D, Muthulakshmi C, Guru KD, Ravikumar G, et al (2012). Submerged fermentation of wheat bran by Aspergillus flavus for production and characterization of carboxy methyl cellulase. Asian Pac. J. Trop. Biomed. •••: S67-S73. Gutiérrez-Correa M, Villena GK, et al (2003). Surface adhesion fermentation: a new fermentation category. Rev. Peru. Biol. 10: 113-124. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, et al (2007). Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol. Phylogenet. Evol. 42: 543-555. Jahromi MF, Liang JB, Rosfarizan M, Goh YM, et al (2011). Efficiency of rice straw lignocelluloses degradability by Aspergillus terreus ATCC 74135 in solid state fermentation. Afr. J. Biotechnol. 10: 4428-4435. Kuhad RC, Gupta R, Singh A, et al (2011). Microbial cellulases and their industrial applications. Enzyme Res. 2011: 280696. Mahmood N, Mariyah A, Ishafaq A, Shahida A, et al (2014). Molecular expression profile of different cellulolytic enzyme genes in Aspergillus niger in response to UV radiation and chemical mutagenesis. Cellul. Chem. Technol. 48: 529-533. Mahmoud MA, Ali HM, El-Aziz ARM, Al-Othman MR, et al (2014). Molecular characterization of aflatoxigenic and non-aflatoxigenic Aspergillus flavus isolates collected from corn grains. Genet. Mol. Res. 13: 9352-9370. Marui J, Kitamoto N, Kato M, Kobayashi T, et al (2002). Transcriptional activator, AoXlnR, mediates cellulose-inductive expression of the xylanolytic and cellulolytic genes in Aspergillus oryzae. FEBS Lett. 528: 279-282. Nazir A, Soni R, Saini HS, Kaur A, et al (2010). Profiling differential expression of cellulases and metabolite footprints in Aspergillus terreus. Appl. Biochem. Biotechnol. 162: 538-547. Ogawa M, Kobayashi T, Koyama Y, et al (2013). ManR, a transcriptional regulator of the β-mannan utilization system, controls the cellulose utilization system in Aspergillus oryzae. Biosci. Biotechnol. Biochem. 77: 426-429. Osherov N, May GS, et al (2001). The molecular mechanisms of conidial germination. FEMS Microbiol. Lett. 199: 153-160. Osuna Y, Sandoval J, Saade H, López RG, et al (2015). Immobilization of Aspergillus niger lipase on chitosan-coated magnetic nanoparticles using two covalent-binding methods. Bioprocess Biosyst. Eng. 38: 1437-1445. Parameswaran B, Palkhiwala P, Gaikaiwari R, Nampoothiri K, et al (2013). Industrial enzymes-present status & future perspective for India. J. Sci. Ind. Res. 72: 271-286. Rabinovich ML, Melnik MS, Bolobova AV, et al (2002). Dedicated to the memory of I.V. Berezin and R.V. Feniksova Microbial cellulases. Appl. Biochem. Microbiol. 38: 305-322. Raper KB and Fennell DI (1965). Aspergillus section Flavi In: The Genus of Aspergillus (Raper KB and Fennell DI, eds.). Williams & Wilkins Company, Baltimore, [538]. Reddy GPK, Narasimha G, Kumar KD, Ramanjaneyulu G, et al (2015). Cellulase production by Aspergillus niger on different natural lignocellulosic substrates. Int. J. Curr. Microbiol. Appl. Sci. 4: 835-845. Renge V, Khedkar SV, Nandurkar NR, et al (2012). Enzyme synthesis by fermentation method: a review. Sci. Rev. Chem. Commun. 2: 585-590. Saitou N, Nei M, et al (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. Shahriarinour M, Wahab MNA, Mohamad R, Mustafa S, et al (2011). Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. Afr. J. Biotechnol. 10: 7459-7467. Shivanna GB, Venkateswaran G, et al (2014). Phytase production by Aspergillus niger CFR 335 and Aspergillus ficuum SGA 01 through submerged and solid-state fermentation. Sci. World J. 2014: 392615. Sørensen A, Lübeck M, Lübeck PS, Ahring BK, et al (2013). Fungal Beta-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules 3: 612-631. Sridevi A, Narasimha G, Ramanjaneyulu G, Dileepkumar K, et al. (2015) Saccharification of pretreated sawdust by Aspergillus niger cellulase. 3 Biotech. 5: 883-892. Stricker AR, Mach RL, de Graaff LH, et al (2008). Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl. Microbiol. Biotechnol. 78: 211-220. Todaka N, Inoue T, Saita K, Ohkuma M, et al (2010). Phylogenetic analysis of cellulolytic enzyme genes from representative lineages of termites and a related cockroach. PLoS One 5: e8636. Utharalakshmi N, Kumar AG, Narendrakumar G, et al (2014). Optimization of cellulase producing Aspergillus flavus SB4 by solid state fermentation using rice bran. J. Pure Appl. Microbiol. 8: 713-719. Villena GK, Fujikawa T, Tsuyumu S, Gutiérrez-Correa M, et al (2009). Differential gene expression of some lignocellulolytic enzymes in Aspergillus niger biofilms. Rev. Peru. Biol. 15: 97-102. Villena GK, Gutiérrez-Correa M, et al (2006). Production of cellulase by Aspergillus niger biofilms developed on polyester cloth. Lett. Appl. Microbiol. 43: 262-268. Viniegra-González G, Favela-Torres E, Aguilar CN, Rómero-Gomeza S, et al (2003). Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 13: 157-167. Ward OP, Qin WM, Dhanjoon J, Ye J, et al (2006). Physiology and biotechnology of Aspergillus. Adv. Appl. Microbiol. 58: 1-75. Watanabe H, Tokuda G, et al (2001). Animal cellulases. Cell. Mol. Life Sci. 58: 1167-1178. Zhou M, Huang ZQ, Zhou B, Luo YL, et al (2015). Construction and expression of two-copy engineered yeast of feruloyl esterase. Electron. J. Biotechnol. 18: 338-342.