Publications

Found 2 results
Filters: Author is P.G. M’Angale  [Clear All Filters]
2016
P. G. M’Angale, Staveley, B. E., M’Angale, P. G., and Staveley, B. E., Inhibition of Atg6 and Pi3K59F autophagy genes in neurons decreases lifespan and locomotor ability in Drosophila melanogaster, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS P.G. M’Angale was partially funded by Department of Biology Teaching Assistantships and a School of Graduate Studies Fellowship from Memorial University of Newfoundland. B.E. Staveley was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. REFERENCES Auluck PK, Chan HY, Trojanowski JQ, Lee VM, et al (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295: 865-868. http://dx.doi.org/10.1126/science.1067389 Chang YY, Neufeld TP, et al (2010). Autophagy takes flight in Drosophila. FEBS Lett. 584: 1342-1349. http://dx.doi.org/10.1016/j.febslet.2010.01.006 Chinta SJ, Mallajosyula JK, Rane A, Andersen JK, et al (2010). Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci. Lett. 486: 235-239. http://dx.doi.org/10.1016/j.neulet.2010.09.061 Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, et al (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305: 1292-1295. http://dx.doi.org/10.1126/science.1101738 Dehay B, Vila M, Bezard E, Brundin P, et al (2016). Alpha-synuclein propagation: New insights from animal models. Mov. Disord. 31: 161-168. http://dx.doi.org/10.1002/mds.26370 Dinkel H, Van Roey K, Michael S, Kumar M, et al (2016). ELM 2016--data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res. 44 (D1): D294-D300. http://dx.doi.org/10.1093/nar/gkv1291 Esteves AR, Arduíno DM, Silva DF, Oliveira CR, et al (2011). Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinsons Dis. 2011: 693761. http://dx.doi.org/10.4061/2011/693761 Feany MB, Bender WW, et al (2000). A Drosophila model of Parkinson’s disease. Nature 404: 394-398. http://dx.doi.org/10.1038/35006074 Forno LS, et al (1996). Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55: 259-272. http://dx.doi.org/10.1097/00005072-199603000-00001 Freeman M, et al (1996). Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87: 651-660. http://dx.doi.org/10.1016/S0092-8674(00)81385-9 Furuya N, Yu J, Byfield M, Pattingre S, et al (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1: 46-52. http://dx.doi.org/10.4161/auto.1.1.1542 Goujon M, McWilliam H, Li W, Valentin F, et al (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38: W695-9. http://dx.doi.org/10.1093/nar/gkq313 Jiang P, Mizushima N, et al (2014). Autophagy and human diseases. Cell Res. 24: 69-79. http://dx.doi.org/10.1038/cr.2013.161 Juhász G, Hill JH, Yan Y, Sass M, et al (2008). The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181: 655-666. http://dx.doi.org/10.1083/jcb.200712051 la Cour T, Kiemer L, Mølgaard A, Gupta R, et al (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17: 527-536. http://dx.doi.org/10.1093/protein/gzh062 Levine B, Kroemer G, et al (2008). Autophagy in the pathogenesis of disease. Cell 132: 27-42. http://dx.doi.org/10.1016/j.cell.2007.12.018 Li H, Chaney S, Roberts IJ, Forte M, et al (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10: 211-214. http://dx.doi.org/10.1016/S0960-9822(00)00340-7 Lindqvist LM, Heinlein M, Huang DC, Vaux DL, et al (2014). Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl. Acad. Sci. USA 111: 8512-8517. http://dx.doi.org/10.1073/pnas.1406425111 M’Angale PG, Staveley BE, et al (2012). Effects of α-synuclein expression in the developing Drosophila eye. Drosoph. Inf. Serv. 95: 85-89. M’Angale PG, Staveley BE, et al (2016). The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BMC Neurosci. 17: 24. http://dx.doi.org/10.1186/s12868-016-0261-z Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, et al (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43: D222-D226. http://dx.doi.org/10.1093/nar/gku1221 Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, et al (2008). Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118: 777-788. McPhee CK, Baehrecke EH, et al (2009). Autophagy in Drosophila melanogaster. Biochim. Biophys. Acta 1793: 1452-1460. http://dx.doi.org/10.1016/j.bbamcr.2009.02.009 Pattingre S, Tassa A, Qu X, Garuti R, et al (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927-939. http://dx.doi.org/10.1016/j.cell.2005.07.002 Perrett RM, Alexopoulou Z, Tofaris GK, et al (2015). The endosomal pathway in Parkinson’s disease. Mol. Cell. Neurosci. 66 (Pt A): 21-28. http://dx.doi.org/10.1016/j.mcn.2015.02.009 Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, et al (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045-2047. http://dx.doi.org/10.1126/science.276.5321.2045 Quinn L, Coombe M, Mills K, Daish T, et al (2003). Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. 22: 3568-3579. http://dx.doi.org/10.1093/emboj/cdg355 Schneider CA, Rasband WS, Eliceiri KW, et al (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. http://dx.doi.org/10.1038/nmeth.2089 Sievers F, Wilm A, Dineen D, Gibson TJ, et al (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539. http://dx.doi.org/10.1038/msb.2011.75 Sinha S, Levine B, et al (2008). The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 (Suppl 1): S137-S148. http://dx.doi.org/10.1038/onc.2009.51 Staveley BE (2014). Drosophila models of Parkinson disease. In: Movement disorders: genetics and models (LeDoux MS, ed.). Academic Press, Cambridge, 345-354. Staveley BE, Phillips JP, Hilliker AJ, et al (1990). Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33: 867-872. http://dx.doi.org/10.1139/g90-130 Todd AM, Staveley BE, et al (2004). Novel assay and analysis for measuring climbing ability in Drosophila. Drosoph. Inf. Serv. 87: 101-107. Todd AM, Staveley BE, et al (2012). Expression of Pink1 with α-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan. Genet. Mol. Res. 11: 1497-1502. http://dx.doi.org/10.4238/2012.May.21.6 Webb JL, Ravikumar B, Atkins J, Skepper JN, et al (2003). α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278: 25009-25013. http://dx.doi.org/10.1074/jbc.M300227200 Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, et al (2010). α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol. 190: 1023-1037. http://dx.doi.org/10.1083/jcb.201003122 Xilouri M, Stefanis L, et al (2011). Autophagic pathways in Parkinson disease and related disorders. Expert Rev. Mol. Med. 13: e8. http://dx.doi.org/10.1017/S1462399411001803 Xilouri M, Stefanis L, et al (2015). Chaperone mediated autophagy to the rescue: A new-fangled target for the treatment of neurodegenerative diseases. Mol. Cell. Neurosci. 66 (Pt A): 29-36. http://dx.doi.org/10.1016/j.mcn.2015.01.003 Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, et al (2009). DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10: 285-292. http://dx.doi.org/10.1038/embor.2008.246 Zirin J, Perrimon N, et al (2010). Drosophila as a model system to study autophagy. Semin. Immunopathol. 32: 363-372. http://dx.doi.org/10.1007/s00281-010-0223-y
P. G. M’Angale, Staveley, B. E., M’Angale, P. G., and Staveley, B. E., Inhibition of Atg6 and Pi3K59F autophagy genes in neurons decreases lifespan and locomotor ability in Drosophila melanogaster, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS P.G. M’Angale was partially funded by Department of Biology Teaching Assistantships and a School of Graduate Studies Fellowship from Memorial University of Newfoundland. B.E. Staveley was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant. REFERENCES Auluck PK, Chan HY, Trojanowski JQ, Lee VM, et al (2002). Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295: 865-868. http://dx.doi.org/10.1126/science.1067389 Chang YY, Neufeld TP, et al (2010). Autophagy takes flight in Drosophila. FEBS Lett. 584: 1342-1349. http://dx.doi.org/10.1016/j.febslet.2010.01.006 Chinta SJ, Mallajosyula JK, Rane A, Andersen JK, et al (2010). Mitochondrial α-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo. Neurosci. Lett. 486: 235-239. http://dx.doi.org/10.1016/j.neulet.2010.09.061 Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, et al (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305: 1292-1295. http://dx.doi.org/10.1126/science.1101738 Dehay B, Vila M, Bezard E, Brundin P, et al (2016). Alpha-synuclein propagation: New insights from animal models. Mov. Disord. 31: 161-168. http://dx.doi.org/10.1002/mds.26370 Dinkel H, Van Roey K, Michael S, Kumar M, et al (2016). ELM 2016--data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res. 44 (D1): D294-D300. http://dx.doi.org/10.1093/nar/gkv1291 Esteves AR, Arduíno DM, Silva DF, Oliveira CR, et al (2011). Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinsons Dis. 2011: 693761. http://dx.doi.org/10.4061/2011/693761 Feany MB, Bender WW, et al (2000). A Drosophila model of Parkinson’s disease. Nature 404: 394-398. http://dx.doi.org/10.1038/35006074 Forno LS, et al (1996). Neuropathology of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 55: 259-272. http://dx.doi.org/10.1097/00005072-199603000-00001 Freeman M, et al (1996). Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87: 651-660. http://dx.doi.org/10.1016/S0092-8674(00)81385-9 Furuya N, Yu J, Byfield M, Pattingre S, et al (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1: 46-52. http://dx.doi.org/10.4161/auto.1.1.1542 Goujon M, McWilliam H, Li W, Valentin F, et al (2010). A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res. 38: W695-9. http://dx.doi.org/10.1093/nar/gkq313 Jiang P, Mizushima N, et al (2014). Autophagy and human diseases. Cell Res. 24: 69-79. http://dx.doi.org/10.1038/cr.2013.161 Juhász G, Hill JH, Yan Y, Sass M, et al (2008). The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181: 655-666. http://dx.doi.org/10.1083/jcb.200712051 la Cour T, Kiemer L, Mølgaard A, Gupta R, et al (2004). Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17: 527-536. http://dx.doi.org/10.1093/protein/gzh062 Levine B, Kroemer G, et al (2008). Autophagy in the pathogenesis of disease. Cell 132: 27-42. http://dx.doi.org/10.1016/j.cell.2007.12.018 Li H, Chaney S, Roberts IJ, Forte M, et al (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10: 211-214. http://dx.doi.org/10.1016/S0960-9822(00)00340-7 Lindqvist LM, Heinlein M, Huang DC, Vaux DL, et al (2014). Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl. Acad. Sci. USA 111: 8512-8517. http://dx.doi.org/10.1073/pnas.1406425111 M’Angale PG, Staveley BE, et al (2012). Effects of α-synuclein expression in the developing Drosophila eye. Drosoph. Inf. Serv. 95: 85-89. M’Angale PG, Staveley BE, et al (2016). The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila. BMC Neurosci. 17: 24. http://dx.doi.org/10.1186/s12868-016-0261-z Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, et al (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43: D222-D226. http://dx.doi.org/10.1093/nar/gku1221 Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, et al (2008). Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J. Clin. Invest. 118: 777-788. McPhee CK, Baehrecke EH, et al (2009). Autophagy in Drosophila melanogaster. Biochim. Biophys. Acta 1793: 1452-1460. http://dx.doi.org/10.1016/j.bbamcr.2009.02.009 Pattingre S, Tassa A, Qu X, Garuti R, et al (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927-939. http://dx.doi.org/10.1016/j.cell.2005.07.002 Perrett RM, Alexopoulou Z, Tofaris GK, et al (2015). The endosomal pathway in Parkinson’s disease. Mol. Cell. Neurosci. 66 (Pt A): 21-28. http://dx.doi.org/10.1016/j.mcn.2015.02.009 Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, et al (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045-2047. http://dx.doi.org/10.1126/science.276.5321.2045 Quinn L, Coombe M, Mills K, Daish T, et al (2003). Buffy, a Drosophila Bcl-2 protein, has anti-apoptotic and cell cycle inhibitory functions. EMBO J. 22: 3568-3579. http://dx.doi.org/10.1093/emboj/cdg355 Schneider CA, Rasband WS, Eliceiri KW, et al (2012). NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. http://dx.doi.org/10.1038/nmeth.2089 Sievers F, Wilm A, Dineen D, Gibson TJ, et al (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539. http://dx.doi.org/10.1038/msb.2011.75 Sinha S, Levine B, et al (2008). The autophagy effector Beclin 1: a novel BH3-only protein. Oncogene 27 (Suppl 1): S137-S148. http://dx.doi.org/10.1038/onc.2009.51 Staveley BE (2014). Drosophila models of Parkinson disease. In: Movement disorders: genetics and models (LeDoux MS, ed.). Academic Press, Cambridge, 345-354. Staveley BE, Phillips JP, Hilliker AJ, et al (1990). Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. Genome 33: 867-872. http://dx.doi.org/10.1139/g90-130 Todd AM, Staveley BE, et al (2004). Novel assay and analysis for measuring climbing ability in Drosophila. Drosoph. Inf. Serv. 87: 101-107. Todd AM, Staveley BE, et al (2012). Expression of Pink1 with α-synuclein in the dopaminergic neurons of Drosophila leads to increases in both lifespan and healthspan. Genet. Mol. Res. 11: 1497-1502. http://dx.doi.org/10.4238/2012.May.21.6 Webb JL, Ravikumar B, Atkins J, Skepper JN, et al (2003). α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278: 25009-25013. http://dx.doi.org/10.1074/jbc.M300227200 Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, et al (2010). α-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J. Cell Biol. 190: 1023-1037. http://dx.doi.org/10.1083/jcb.201003122 Xilouri M, Stefanis L, et al (2011). Autophagic pathways in Parkinson disease and related disorders. Expert Rev. Mol. Med. 13: e8. http://dx.doi.org/10.1017/S1462399411001803 Xilouri M, Stefanis L, et al (2015). Chaperone mediated autophagy to the rescue: A new-fangled target for the treatment of neurodegenerative diseases. Mol. Cell. Neurosci. 66 (Pt A): 29-36. http://dx.doi.org/10.1016/j.mcn.2015.01.003 Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, et al (2009). DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep. 10: 285-292. http://dx.doi.org/10.1038/embor.2008.246 Zirin J, Perrimon N, et al (2010). Drosophila as a model system to study autophagy. Semin. Immunopathol. 32: 363-372. http://dx.doi.org/10.1007/s00281-010-0223-y