Publications

Found 1 results
Filters: Author is B. Gao  [Clear All Filters]
2016
J. B. Ma, Chen, L., Gao, B., and Xu, J., Effect of polymorphisms in interleukin-18 gene on the susceptibility to coronary artery disease in a Chinese population, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe thank the nurses from the First Hospital of Yulin for helping us to collect the blood samples. REFERENCESArimitsu J, Hirano T, Higa S, Kawai M, et al (2006). IL-18 gene polymorphisms affect IL-18 production capability by monocytes. Biochem. Biophys. Res. Commun. 342: 1413-1416. http://dx.doi.org/10.1016/j.bbrc.2006.02.096 Bonfim-Silva R, Guimarães LO, Souza Santos J, Pereira JF, et al (2016). Case-control association study of polymorphisms in the angiotensinogen and angiotensin-converting enzyme genes and coronary artery disease and systemic artery hypertension in African-Brazilians and Caucasian-Brazilians. J. Genet. 95: 63-69. http://dx.doi.org/10.1007/s12041-015-0599-5 Bullock-Palmer RP, et al (2015). Prevention, detection and management of coronary artery disease in minority females. Ethn. Dis. 25: 499-506. http://dx.doi.org/10.18865/ed.25.4.499 Campbell TC, Parpia B, Chen J, et al (1998). Diet, lifestyle, and the etiology of coronary artery disease: the Cornell China study. Am. J. Cardiol. 82 (10B): 18T-21T. http://dx.doi.org/10.1016/S0002-9149(98)00718-8 Chen MC, Chen CJ, Yang CH, Wu CJ, et al (2007). Interleukin-18: a strong predictor of the extent of coronary artery disease in patients with unstable angina. Heart Vessels 22: 371-375. http://dx.doi.org/10.1007/s00380-007-0991-z Cyrus C, Vatte C, Al-Nafie A, Chathoth S, et al (2016). The impact of common polymorphisms in CETP and ABCA1 genes with the risk of coronary artery disease in Saudi Arabians. Hum. Genomics 10: 8. http://dx.doi.org/10.1186/s40246-016-0065-3 de Nooijer R, von der Thüsen JH, Verkleij CJ, Kuiper J, et al (2004). Overexpression of IL-18 decreases intimal collagen content and promotes a vulnerable plaque phenotype in apolipoprotein-E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 24: 2313-2319. http://dx.doi.org/10.1161/01.ATV.0000147126.99529.0a Erbel R, Görge G, et al (2014). [New insights in pathogenesis and etiology of coronary artery disease]. Dtsch. Med. Wochenschr. 139 (Suppl 1): S4-S8. Gao Y, Tong GX, Zhang XW, Leng JH, et al (2010). Interleukin-18 levels on admission are associated with mid-term adverse clinical events in patients with ST-segment elevation acute myocardial infarction undergoing percutaneous coronary intervention. Int. Heart J. 51: 75-81. http://dx.doi.org/10.1536/ihj.51.75 Giedraitis V, He B, Huang WX, Hillert J, et al (2001). Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J. Neuroimmunol. 112: 146-152. http://dx.doi.org/10.1016/S0165-5728(00)00407-0 Hazzaa HH, Rashwan WA, Attia EA, et al (2014). IL-18 gene polymorphisms in aphthous stomatitis vs. Behçet’s disease in a cohort of Egyptian patients. J. Oral Pathol. Med. 43: 746-753. http://dx.doi.org/10.1111/jop.12200 He J, Gu D, Wu X, Reynolds K, et al (2005). Major causes of death among men and women in China. N. Engl. J. Med. 353: 1124-1134. http://dx.doi.org/10.1056/NEJMsa050467 Hernesniemi JA, Heikkilä A, Raitakari OT, Kähönen M, et al (2010a). Interleukin-18 gene polymorphism and markers of subclinical atherosclerosis. The Cardiovascular Risk in Young Finns Study. Ann. Med. 42: 223-230. http://dx.doi.org/10.3109/07853891003769940 Hernesniemi JA, Anttila K, Nieminen T, Kähönen M, et al (2010b). IL-18 gene polymorphism, cardiovascular mortality and coronary artery disease. Eur. J. Clin. Invest. 40: 994-1001. http://dx.doi.org/10.1111/j.1365-2362.2010.02356.x Kishore Kumar G, Rajesh Kumar G, Mrudula Spurthi K, Nivas S, et al (2016). Polymorphisms of extrinsic death receptor apoptotic genes (FAS -670 G>A, FASL -844 T>C) in coronary artery disease. Apoptosis 21: 558-565. http://dx.doi.org/10.1007/s10495-016-1232-7 Li Q, Li Z, Zhang X, Ruan Y, et al (2014). Evaluated plasma interleukin-18/interleukin-10 ratio is a risk factor for acute coronary syndromes in patients with stable angina pectoris. Cardiol. J. 21: 83-88. http://dx.doi.org/10.5603/CJ.a2013.0057 Liang XH, Cheung W, Heng CK, Wang DY, et al (2005). Reduced transcriptional activity in individuals with IL-18 gene variants detected from functional but not association study. Biochem. Biophys. Res. Commun. 338: 736-741. http://dx.doi.org/10.1016/j.bbrc.2005.10.012 Libby P, Ridker PM, Maseri A, et al (2002). Inflammation and atherosclerosis. Circulation 105: 1135-1143. http://dx.doi.org/10.1161/hc0902.104353 Liu W, Tang Q, Jiang H, Ding X, et al (2009). Promoter polymorphism of interleukin-18 in angiographically proven coronary artery disease. Angiology 60: 180-185. Liu W, Liu Y, Jiang H, Ding X, et al (2013). Plasma levels of interleukin 18, interleukin 10, and matrix metalloproteinase-9 and -137G/C polymorphism of interleukin 18 are associated with incidence of in-stent restenosis after percutaneous coronary intervention. Inflammation 36: 1129-1135. http://dx.doi.org/10.1007/s10753-013-9647-6 Lu JX, Lu ZQ, Zhang SL, Zhi J, et al (2013). Correlation between interleukin-18 promoter -607C/A polymorphism and susceptibility to ischemic stroke. Braz. J. Med. Biol. Res. 46: 502-506. http://dx.doi.org/10.1590/1414-431X20132850 Mohammadzadeh G, Ghaffari MA, Bazyar M, Kheirollah A, et al (2016). Association between two common polymorphisms (single nucleotide polymorphism -250G/A and -514C/T) of the hepatic lipase gene and coronary artery disease in type 2 diabetic patients. Adv. Biomed. Res. 5: 27. http://dx.doi.org/10.4103/2277-9175.176366 Opstad TB, Pettersen AÅ, Arnesen H, Seljeflot I, et al (2011). Circulating levels of IL-18 are significantly influenced by the IL-18 +183 A/G polymorphism in coronary artery disease patients with diabetes type 2 and the metabolic syndrome: an observational study. Cardiovasc. Diabetol. 10: 110. http://dx.doi.org/10.1186/1475-2840-10-110 Opstad TB, Pettersen AÅ, Arnesen H, Seljeflot I, et al (2013). The co-existence of the IL-18+183 A/G and MMP-9 -1562 C/T polymorphisms is associated with clinical events in coronary artery disease patients. PLoS One 8: e74498. http://dx.doi.org/10.1371/journal.pone.0074498 Pei F, Han Y, Zhang X, Yan C, et al (2009). Association of interleukin-18 gene promoter polymorphisms with risk of acute myocardial infarction in northern Chinese Han population. Clin. Chem. Lab. Med. 47: 523-529. http://dx.doi.org/10.1515/CCLM.2009.130 Thompson SR, Sanders J, Stephens JW, Miller GJ, et al (2007). A common interleukin 18 haplotype is associated with higher body mass index in subjects with diabetes and coronary heart disease. Metabolism 56: 662-669. http://dx.doi.org/10.1016/j.metabol.2006.12.015 Vatte C, Cyrus C, Al Shehri AM, Chathoth S, et al (2016). Investigation of KIF6 Trp719Arg gene polymorphism in a case-control study of coronary artery disease and non-fatal myocardial infarction in the Eastern Province of Saudi Arabia. Ann. Saudi Med. 36: 105-111. Yang HT, Wang SL, Yan LJ, Qian P, et al (2015). Association of interleukin gene polymorphisms with the risk of coronary artery disease. Genet. Mol. Res. 14: 12489-12496. http://dx.doi.org/10.4238/2015.October.16.16 Zernecke A, Shagdarsuren E, Weber C, et al (2008). Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol. 28: 1897-1908. http://dx.doi.org/10.1161/ATVBAHA.107.161174 Zhang D, Zhang X, Liu D, Liu T, et al (2016). Association between insulin receptor substrate-1 polymorphisms and high platelet reactivity with clopidogrel therapy in coronary artery disease patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 15: 50. http://dx.doi.org/10.1186/s12933-016-0362-0 Zhang N, Yu JT, Yu NN, Lu RC, et al (2010). Interleukin-18 promoter polymorphisms and risk of ischemic stroke. Brain Res. Bull. 81: 590-594. http://dx.doi.org/10.1016/j.brainresbull.2010.01.008 Zheng XS, Wang S, Ni M, et al (2016). Association between interleukin 17A gene polymorphisms and risk of coronary artery disease. Genet. Mol. Res. 15.http://dx.doi.org/10.4238/gmr.15017074