Publications

Found 1 results
Filters: Author is C.Q. Chu  [Clear All Filters]
2016
H. X. Shen, Li, L., Chen, Q., He, Y. Q., Yu, C. H., Chu, C. Q., Lu, X. J., and Chen, J., LECT2 association with macrophage-mediated killing of Helicobacter pylori by activating NF-κB and nitric oxide production, vol. 15, no. 4, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the Research Project of Chinese Ministry of Education (#213017A), the Program for the Natural Science Foundation of China (#81400606), the Natural Science Foundation of Ningbo City of China (#2013A610166), and the KC Wong Magna Fund in Ningbo University.REFERENCESAbdullah Z, Knolle PA, et al (2014). Scaling of immune responses against intracellular bacterial infection. EMBO J. 33: 2283-2294. http://dx.doi.org/10.15252/embj.201489055 Ahmed AU, Sarvestani ST, Gantier MP, Williams BR, et al (2014). Integrin-linked kinase modulates lipopolysaccharide- and Helicobacter pylori-induced nuclear factor κB-activated tumor necrosis factor-α production via regulation of p65 serine 536 phosphorylation. J. Biol. Chem. 289: 27776-27793. http://dx.doi.org/10.1074/jbc.M114.574541 Ansari SA, Devi S, Tenguria S, Kumar A, et al (2014). Helicobacter pylori protein HP0986 (TieA) interacts with mouse TNFR1 and triggers proinflammatory and proapoptotic signaling pathways in cultured macrophage cells (RAW 264.7). Cytokine 68: 110-117. http://dx.doi.org/10.1016/j.cyto.2014.03.006 Baccarini M, et al (2005). Second nature: biological functions of the Raf-1 “kinase”. FEBS Lett. 579: 3271-3277. http://dx.doi.org/10.1016/j.febslet.2005.03.024 Benson MD, James S, Scott K, Liepnieks JJ, et al (2008). Leukocyte chemotactic factor 2: A novel renal amyloid protein. Kidney Int. 74: 218-222. http://dx.doi.org/10.1038/ki.2008.152 Blom N, Gammeltoft S, Brunak S, et al (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294: 1351-1362. http://dx.doi.org/10.1006/jmbi.1999.3310 Bussière FI, Chaturvedi R, Cheng Y, Gobert AP, et al (2005). Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J. Biol. Chem. 280: 2409-2412. http://dx.doi.org/10.1074/jbc.C400498200 Castaño-Rodríguez N, Kaakoush NO, Mitchell HM, et al (2014). Pattern-recognition receptors and gastric cancer. Front. Immunol. 5: 336. Chaturvedi R, Asim M, Lewis ND, Algood HM, et al (2007). L-arginine availability regulates inducible nitric oxide synthase-dependent host defense against Helicobacter pylori. Infect. Immun. 75: 4305-4315. http://dx.doi.org/10.1128/IAI.00578-07 Chaturvedi R, de Sablet T, Coburn LA, Gobert AP, et al (2012). Arginine and polyamines in Helicobacter pylori-induced immune dysregulation and gastric carcinogenesis. Amino Acids 42: 627-640. http://dx.doi.org/10.1007/s00726-011-1038-4 Chen TE, Xu XM, Liu P, Liang SY, et al (2015). Elucidating the function and tolerance mechanism of gamma delta (γ δ) T cells in a Helicobacter pylori infection model. Genet. Mol. Res. 14: 10543-10552. http://dx.doi.org/10.4238/2015.September.8.16 Cid TP, Fernández MC, Benito Martínez S, Jones NL, et al (2013). Pathogenesis of Helicobacter pylori infection. Helicobacter 18 (Suppl 1): 12-17. http://dx.doi.org/10.1111/hel.12076 Dang MH, Kato H, Ueshiba H, Omori-Miyake M, et al (2010). Possible role of LECT2 as an intrinsic regulatory factor in SEA-induced toxicity in d-galactosamine-sensitized mice. Clin. Immunol. 137: 311-321. http://dx.doi.org/10.1016/j.clim.2010.08.002 Dhillon AS, von Kriegsheim A, Grindlay J, Kolch W, et al (2007). Phosphatase and feedback regulation of Raf-1 signaling. Cell Cycle 6: 3-7. http://dx.doi.org/10.4161/cc.6.1.3593 Forbus J, Spratt H, Wiktorowicz J, Wu Z, et al (2006). Functional analysis of the nuclear proteome of human A549 alveolar epithelial cells by HPLC-high resolution 2-D gel electrophoresis. Proteomics 6: 2656-2672. http://dx.doi.org/10.1002/pmic.200500652 Granger DL, Taintor RR, Boockvar KS, HibbsJBJret al. (1996). Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymol. 268: 142-151. http://dx.doi.org/10.1016/S0076-6879(96)68016-1 Gringhuis SI, den Dunnen J, Litjens M, van Het Hof B, et al (2007). C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity 26: 605-616. http://dx.doi.org/10.1016/j.immuni.2007.03.012 Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, et al (2009). Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat. Immunol. 10: 203-213. http://dx.doi.org/10.1038/ni.1692 Hardbower DM, Asim M, Murray-Stewart T, CaseroRAJret al (2016). Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection. Amino Acids 48: 2375-2388. http://dx.doi.org/10.1007/s00726-016-2231-2 Hayden MS, Ghosh S, et al (2011). NF-κB in immunobiology. Cell Res. 21: 223-244. http://dx.doi.org/10.1038/cr.2011.13 Hong JB, Zuo W, Wang AJ, Lu NH, et al (2016). Helicobacter pylori infection synergistic with IL-1β gene polymorphisms potentially contributes to the carcinogenesis of gastric cancer. Int. J. Med. Sci. 13: 298-303. http://dx.doi.org/10.7150/ijms.14239 Huang J, DeGraves FJ, Lenz SD, Gao D, et al (2002). The quantity of nitric oxide released by macrophages regulates Chlamydia-induced disease. Proc. Natl. Acad. Sci. USA 99: 3914-3919. http://dx.doi.org/10.1073/pnas.062578399 Hu Y, Liu JP, Zhu Y, Lu NH, et al (2016). The importance of Toll-like receptors in NF-κB signaling pathway activation by Helicobacter pylori infection and the regulators of this response. Helicobacter, in press. http://dx.doi.org/10.1111/hel.12292 Hughes CE, Sinha U, Pandey A, Eble JA, et al (2013). Critical Role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J. Biol. Chem. 288: 5127-5135. http://dx.doi.org/10.1074/jbc.M112.411462 Jones E, Adcock IM, Ahmed BY, Punchard NA, et al (2007). Modulation of LPS stimulated NF-kappaB mediated Nitric Oxide production by PKCepsilon and JAK2 in RAW macrophages. J. Inflamm. (Lond.) 4: 23. http://dx.doi.org/10.1186/1476-9255-4-23 Kameoka Y, Yamagoe S, Hatano Y, Kasama T, et al (2000). Val58Ile polymorphism of the neutrophil chemoattractant LECT2 and rheumatoid arthritis in the Japanese population. Arthritis Rheum. 43: 1419-1420. http://dx.doi.org/10.1002/1529-0131(200006)43:6<1419::AID-ANR28>3.0.CO;2-I Kim G, Kim TH, Kang MJ, Choi JA, et al (2016). Inhibitory effect of withaferin A on Helicobacter pylori‑induced IL‑8 production and NF‑κB activation in gastric epithelial cells. Mol. Med. Rep. 13: 967-972. Kumar N, Mariappan V, Baddam R, Lankapalli AK, et al (2015). Comparative genomic analysis of Helicobacter pylori from Malaysia identifies three distinct lineages suggestive of differential evolution. Nucleic Acids Res. 43: 324-335. http://dx.doi.org/10.1093/nar/gku1271 Lu DY, Tang CH, Chang CH, Maa MC, et al (2012). Helicobacter pylori attenuates lipopolysaccharide-induced nitric oxide production by murine macrophages. Innate Immun. 18: 406-417. http://dx.doi.org/10.1177/1753425911413164 Lu XJ, Chen J, Yu CH, Shi YH, et al (2013). LECT2 protects mice against bacterial sepsis by activating macrophages via the CD209a receptor. J. Exp. Med. 210: 5-13. http://dx.doi.org/10.1084/jem.20121466 Oeckinghaus A, Hayden MS, Ghosh S, et al (2011). Crosstalk in NF-κB signaling pathways. Nat. Immunol. 12: 695-708. http://dx.doi.org/10.1038/ni.2065 Osorio F, Reis e Sousa C, et al (2011). Myeloid C-type lectin receptors in pathogen recognition and host defense. Immunity 34: 651-664. http://dx.doi.org/10.1016/j.immuni.2011.05.001 Park CG, Takahara K, Umemoto E, Yashima Y, et al (2001). Five mouse homologues of the human dendritic cell C-type lectin, DC-SIGN. Int. Immunol. 13: 1283-1290. http://dx.doi.org/10.1093/intimm/13.10.1283 Polk DB, PeekRMJret al. (2010). Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10: 403-414. http://dx.doi.org/10.1038/nrc2857 Saito T, Okumura A, Watanabe H, Asano M, et al (2004). Increase in hepatic NKT cells in leukocyte cell-derived chemotaxin 2-deficient mice contributes to severe concanavalin A-induced hepatitis. J. Immunol. 173: 579-585. http://dx.doi.org/10.4049/jimmunol.173.1.579 Sancho D, Reis e Sousa C, et al (2012). Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu. Rev. Immunol. 30: 491-529. http://dx.doi.org/10.1146/annurev-immunol-031210-101352 Suzuki-Inoue K, Fuller GL, García A, Eble JA, et al (2006). A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107: 542-549. http://dx.doi.org/10.1182/blood-2005-05-1994 Uchida T, Nagai H, Gotoh K, Kanagawa H, et al (1999). Expression pattern of a newly recognized protein, LECT2, in hepatocellular carcinoma and its premalignant lesion. Pathol. Int. 49: 147-151. http://dx.doi.org/10.1046/j.1440-1827.1999.00836.x Yamagoe S, Mizuno S, Suzuki K, et al (1998). Molecular cloning of human and bovine LECT2 having a neutrophil chemotactic activity and its specific expression in the liver. Biochim. Biophys. Acta 1396: 105-113. http://dx.doi.org/10.1016/S0167-4781(97)00181-4 Yamauchi K, Choi IJ, Lu H, Ogiwara H, et al (2008). Regulation of IL-18 in Helicobacter pylori infection. J. Immunol. 180: 1207-1216. http://dx.doi.org/10.4049/jimmunol.180.2.1207