Publications

Found 1 results
Filters: Author is Y.W. Tang  [Clear All Filters]
2016
H. J. Yuan, Wang, Y. L., Wei, Z. X., Xu, Q. J., Zeng, X. Q., Tang, Y. W., and Nyima, T. S., NJ cluster analysis of the SnRK2, PYR/PYL/RCAR, and ABF genes in Tibetan hulless barley, vol. 15, no. 4. GeneticsMR, p. -, 2016.
Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSResearch supported by the following funding sources: the National Program on Key Basic Research Project (#2012CB723006), the National Science and Technology Support Program (#2012BAD03B01), and the Tibet Autonomous Region Financial Special Fund (#2014CZZX001).REFERENCESCao J, Jiang M, Li P, Chu Z, et al (2016). Genome-wide identification and evolutionary analyses of the PP2C gene family with their expression profiling in response to multiple stresses in Brachypodium distachyon. BMC Genomics 17: 175. http://dx.doi.org/10.1186/s12864-016-2526-4 Chen L, Han J, Deng X, Tan S, et al (2016). Expansion and stress responses of AP2/EREBP superfamily in Brachypodium distachyon. Sci. Rep. 6: 21623. http://dx.doi.org/10.1038/srep21623 Dai F, Nevo E, Wu D, Comadran J, et al (2012). Tibet is one of the centers of domestication of cultivated barley. Proc. Natl. Acad. Sci. USA 109: 16969-16973. http://dx.doi.org/10.1073/pnas.1215265109 de Zelicourt A, Colcombet J and Hirt H (2016). The role of MAPK modules and ABA during abiotic stress signaling. Trends Plant Sci. pii: S1360-1385(16)30006-1. doi: http://dx.doi.org/10.1016/j.tplants.2016.04.004. Georg-Kraemer JE, Ferreira CA, Cavalli SS, et al (2011). Differential gene expression patterns in the autogamous plant Hordeum euclaston (Poaceae). Genet. Mol. Res. 10: 295-310. http://dx.doi.org/10.4238/vol10-1gmr1017 Genome Assembly. The Arabidopsis Information Resource. Accessed March 29, 2016. Fan W, Zhao M, Li S, Bai X, et al (2016). Contrasting transcriptional responses of PYR1/PYL/RCAR ABA receptors to ABA or dehydration stress between maize seedling leaves and roots. BMC Plant Biol. 16: 99. http://dx.doi.org/10.1186/s12870-016-0764-x Hauser F, Waadt R, Schroeder JI, et al (2011). Evolution of abscisic acid synthesis and signaling mechanisms. Curr. Biol. 21: R346-R355. http://dx.doi.org/10.1016/j.cub.2011.03.015 International Brachypodium Initiativeet al (2010). Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463: 763-768. http://dx.doi.org/10.1038/nature08747 Ji L, Wang J, Ye M, Li Y, et al (2013). Identification and characterization of the Populus AREB/ABF subfamily. J. Integr. Plant Biol. 55: 177-186. http://dx.doi.org/10.1111/j.1744-7909.2012.01183.x Merilo E, Laanemets K, Hu H, Xue S, et al (2013). PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness-, and CO2-induced stomatal regulation. Plant Physiol. 162: 1652-1668. http://dx.doi.org/10.1104/pp.113.220608 Ng LM, Melcher K, Teh BT, Xu HE, et al (2014). Abscisic acid perception and signaling: structural mechanisms and applications. Acta Pharmacol. Sin. 35: 567-584. http://dx.doi.org/10.1038/aps.2014.5 Saha J, Chatterjee C, Sengupta A, Gupta K, et al (2014). Genome-wide analysis and evolutionary study of sucrose non-fermenting 1-related protein kinase 2 (SnRK2) gene family members in Arabidopsis and Oryza. Comput. Biol. Chem. 49: 59-70. http://dx.doi.org/10.1016/j.compbiolchem.2013.09.005 Tajdel M, Mituła F, Ludwików A, et al (2016). Regulation of Arabidopsis MAPKKK18 by ABI1 and SnRK2, components of the ABA signaling pathway. Plant Signal. Behav. 11: e1139277. http://dx.doi.org/10.1080/15592324.2016.1139277 Tamura K, Stecher G, Peterson D, Filipski A, et al (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. http://dx.doi.org/10.1093/molbev/mst197 Wang L, Hu W, Sun J, Liang X, et al (2015). Genome-wide analysis of SnRK gene family in Brachypodium distachyon and functional characterization of BdSnRK2.9. Plant Sci. 237: 33-45. http://dx.doi.org/10.1016/j.plantsci.2015.05.008 Wen F, Zhu H, Li P, Jiang M, et al (2014). Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon. DNA Res. 21: 327-339. http://dx.doi.org/10.1093/dnares/dst060 Yoshida T, Fujita Y, Maruyama K, Mogami J, et al (2015). Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ. 38: 35-49. http://dx.doi.org/10.1111/pce.12351 Yuan HJ, Luo XM, Nyima TS, Wang YL, et al (2015). Cloning and characterization of up-regulated HbSINA4 gene induced by drought stress in Tibetan hulless barley. Genet. Mol. Res. 14: 15312-15319. http://dx.doi.org/10.4238/2015.November.30.7 Zeng X, Long H, Wang Z, Zhao S, et al (2015). The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proc. Natl. Acad. Sci. USA 112: 1095-1100. http://dx.doi.org/10.1073/pnas.1423628112 Zeng X, Bai L, Wei Z, Yuan H, et al (2016). Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC Genomics 17: 386. http://dx.doi.org/10.1186/s12864-016-2685-3 Zhou C, Ma ZY, Zhu L, Guo JS, et al (2015). Overexpression of EsMcsu1 from the halophytic plant Eutrema salsugineum promotes abscisic acid biosynthesis and increases drought resistance in alfalfa (Medicago sativa L.). Genet. Mol. Res. 14: 17204-17218. http://dx.doi.org/10.4238/2015.December.16.20 Zohary D and Hopf M (2000). Domestication of plants in the Old World: The origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. 3rd edn. Oxford University Press, New York.