Publications

Found 2 results
Filters: Author is L.M.R. Rodrigues  [Clear All Filters]
2016
R. P. Luciano, Wajchenberg, M., Almeida, S. S., Amorim, C. E. N., Rodrigues, L. M. R., Araujo, R. C., Puertas, E. B., Faloppa, F., Luciano, R. P., Wajchenberg, M., Almeida, S. S., Amorim, C. E. N., Rodrigues, L. M. R., Araujo, R. C., Puertas, E. B., and Faloppa, F., Genetic ACE I/D and ACTN3 R577X polymorphisms and adolescent idiopathic scoliosis, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS The authors thank the Foundation of Sao Paulo Research for their support of the Universidade Federal de São Paulo in promoting scientific development. REFERENCES Alden KJ, Marosy B, Nzegwu N, Justice CM, et al (2006). Idiopathic scoliosis: identification of candidate regions on chromosome 19p13. Spine 31: 1815-1819. http://dx.doi.org/10.1097/01.brs.0000227264.23603.dc Almeida SS, Barros CC, Moraes MR, Russo FJ, et al (2010). Plasma Kallikrein and Angiotensin I-converting enzyme N- and C-terminal domain activities are modulated by the insertion/deletion polymorphism. Neuropeptides 44: 139-143. http://dx.doi.org/10.1016/j.npep.2009.12.003 Amorim CE, Nogueira E, Almeida SS, Gomes PP, et al (2013). Clinical impact of an angiotensin I-converting enzyme insertion/deletion and kinin B2 receptor +9/-9 polymorphisms in the prognosis of renal transplantation. Biol. Chem. 394: 369-377. http://dx.doi.org/10.1515/hsz-2012-0314 Aulisa L, Papaleo P, Pola E, Angelini F, et al (2007). Association between IL-6 and MMP-3 gene polymorphisms and adolescent idiopathic scoliosis: a case-control study. Spine 32: 2700-2702. http://dx.doi.org/10.1097/BRS.0b013e31815a5943 Bray MS, Hagberg JM, Pérusse L, Rankinen T, et al (2009). The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med. Sci. Sports Exerc. 41: 35-73. http://dx.doi.org/10.1249/MSS.0b013e3181844179 Chagas JCM, Puertas EB and Filho JL (1993). Histochemical study of back rotator muscle of adolescent patient with idiopathic scoliosis. Rev. bras. ortop. 28: 125-128. Charbonneau DE, Hanson ED, Ludlow AT, Delmonico MJ, et al (2008). ACE genotype and the muscle hypertrophic and strength responses to strength training. Med. Sci. Sports Exerc. 40: 677-683. http://dx.doi.org/10.1249/MSS.0b013e318161eab9 Chen S, Zhao L, Roffey DM, Phan P, et al (2014). Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis in East Asians: a systematic review and meta-analysis. Spine J. 14: 2968-2975. http://dx.doi.org/10.1016/j.spinee.2014.05.019 Chen Z, Tang NL, Cao X, Qiao D, et al (2009). Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur. J. Hum. Genet. 17: 525-532. http://dx.doi.org/10.1038/ejhg.2008.203 Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, et al. (2005). ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J. Appl. Physiol. 99: 154-163. Inoue M, Minami S, Nakata Y, Kitahara H, et al (2002). Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine 27: 2357-2362. http://dx.doi.org/10.1097/00007632-200211010-00009 Jiang H, Qiu X, Dai J, Yan H, et al (2013). Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population. Eur. Spine J. 22: 282-286. http://dx.doi.org/10.1007/s00586-012-2532-4 Jiang J, Qian B, Mao S, Zhao Q, et al (2012). A promoter polymorphism of tissue inhibitor of metalloproteinase-2 gene is associated with severity of thoracic adolescent idiopathic scoliosis. Spine 37: 41-47. http://dx.doi.org/10.1097/BRS.0b013e31820e71e3 Johnson MA, Polgar J, Weightman D, Appleton D, et al (1973). Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J. Neurol. Sci. 18: 111-129. http://dx.doi.org/10.1016/0022-510X(73)90023-3 King HA, Moe JH, Bradford DS, Winter RB, et al (1983). The selection of fusion levels in thoracic idiopathic scoliosis. J. Bone Joint Surg. Am. 65: 1302-1313. http://dx.doi.org/10.2106/00004623-198365090-00012 Kouwenhoven JW, Van Ommeren PM, Pruijs HE, Castelein RM, et al (2006). Spinal decompensation in neuromuscular disease. Spine 31: E188-E191. http://dx.doi.org/10.1097/01.brs.0000208131.42824.c3 Luciano RdeP, Puertas EB, Martins DE, Faloppa F, et al (2015). Adolescent idiopathic scoliosis without limb weakness: a differential diagnosis of core myopathy? BMC Musculoskelet. Disord. 16: 179. http://dx.doi.org/10.1186/s12891-015-0629-8 Macarthur DG, North KN, et al (2005). Genes and human elite athletic performance. Hum. Genet. 116: 331-339. http://dx.doi.org/10.1007/s00439-005-1261-8 Mannion AF, Meier M, Grob D, Müntener M, et al (1998). Paraspinal muscle fibre type alterations associated with scoliosis: an old problem revisited with new evidence. Eur. Spine J. 7: 289-293. http://dx.doi.org/10.1007/s005860050077 Meier MP, Klein MP, Krebs D, Grob D, et al (1997). Fiber transformations in multifidus muscle of young patients with idiopathic scoliosis. Spine 22: 2357-2364. http://dx.doi.org/10.1097/00007632-199710150-00008 North KN, Yang N, Wattanasirichaigoon D, Mills M, et al (1999). A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat. Genet. 21: 353-354. http://dx.doi.org/10.1038/7675 Ocaka L, Zhao C, Reed JA, Ebenezer ND, et al (2008). Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J. Med. Genet. 45: 87-92. http://dx.doi.org/10.1136/jmg.2007.051896 Ogilvie JW, Braun J, Argyle V, Nelson L, et al (2006). The search for idiopathic scoliosis genes. Spine 31: 679-681. http://dx.doi.org/10.1097/01.brs.0000202527.25356.90 Peng Y, Liang G, Pei Y, Ye W, et al (2012). Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int. Orthop. 36: 671-677. http://dx.doi.org/10.1007/s00264-011-1374-8 Qiu XS, Tang NL, Yeung HY, Qiu Y, et al (2008). Association study between adolescent idiopathic scoliosis and the DPP9 gene which is located in the candidate region identified by linkage analysis. Postgrad. Med. J. 84: 498-501. http://dx.doi.org/10.1136/pgmj.2007.066639 Reneland R, Haenni A, Andersson PE, Andrén B, et al (1999). Skeletal muscle angiotensin-converting enzyme and its relationship to blood pressure in primary hypertension and healthy elderly men. Blood Press. 8: 16-22. http://dx.doi.org/10.1080/080370599438347 Suh KT, Eun IS, Lee JS, et al (2010). Polymorphism in vitamin D receptor is associated with bone mineral density in patients with adolescent idiopathic scoliosis. Eur. Spine J. 19: 1545-1550. http://dx.doi.org/10.1007/s00586-010-1385-y Takahashi Y, Kou I, Takahashi A, Johnson TA, et al (2011). A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat. Genet. 43: 1237-1240. http://dx.doi.org/10.1038/ng.974 Thorstensson A, Carlson H, et al (1987). Fibre types in human lumbar back muscles. Acta Physiol. Scand. 131: 195-202. http://dx.doi.org/10.1111/j.1748-1716.1987.tb08226.x Wajchenberg M, Luciano RdeP, Araújo RC, Martins DE, et al (2013). Polymorphism of the ace gene and the α-actinin-3 gene in adolescent idiopathic scoliosis. Acta Ortop. Bras. 21: 170-174. http://dx.doi.org/10.1590/S1413-78522013000300009 Wajchenberg M, Martins DE, Luciano RdeP, Puertas EB, et al (2015). Histochemical analysis of paraspinal rotator muscles from patients with adolescent idiopathic scoliosis: a cross-sectional study. Medicine (Baltimore) 94: e598. http://dx.doi.org/10.1097/MD.0000000000000598 Wise CA, Barnes R, Gillum J, Herring JA, et al (2000). Localization of susceptibility to familial idiopathic scoliosis. Spine 25: 2372-2380. http://dx.doi.org/10.1097/00007632-200009150-00017 Wynne-Davies R, et al (1968). Familial (idiopathic) scoliosis. A family survey. J. Bone Joint Surg. Br. 50: 24-30. Yang Y, Wu Z, Zhao T, Wang H, et al (2009). Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics 32: 411. http://dx.doi.org/10.3928/01477447-20090511-08 Zhang B, Tanaka H, Shono N, Miura S, et al (2003). The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin. Genet. 63: 139-144. http://dx.doi.org/10.1034/j.1399-0004.2003.00029.x Zhao D, Qiu GX, Wang YP, Zhang JG, et al (2009). Association between adolescent idiopathic scoliosis with double curve and polymorphisms of calmodulin1 gene/estrogen receptor-α gene. Orthop. Surg. 1: 222-230. http://dx.doi.org/10.1111/j.1757-7861.2009.00038.x
R. P. Luciano, Wajchenberg, M., Almeida, S. S., Amorim, C. E. N., Rodrigues, L. M. R., Araujo, R. C., Puertas, E. B., Faloppa, F., Luciano, R. P., Wajchenberg, M., Almeida, S. S., Amorim, C. E. N., Rodrigues, L. M. R., Araujo, R. C., Puertas, E. B., and Faloppa, F., Genetic ACE I/D and ACTN3 R577X polymorphisms and adolescent idiopathic scoliosis, vol. 15, no. 4, p. -, 2016.
Conflicts of interest The authors declare no conflict of interest. ACKNOWLEDGMENTS The authors thank the Foundation of Sao Paulo Research for their support of the Universidade Federal de São Paulo in promoting scientific development. REFERENCES Alden KJ, Marosy B, Nzegwu N, Justice CM, et al (2006). Idiopathic scoliosis: identification of candidate regions on chromosome 19p13. Spine 31: 1815-1819. http://dx.doi.org/10.1097/01.brs.0000227264.23603.dc Almeida SS, Barros CC, Moraes MR, Russo FJ, et al (2010). Plasma Kallikrein and Angiotensin I-converting enzyme N- and C-terminal domain activities are modulated by the insertion/deletion polymorphism. Neuropeptides 44: 139-143. http://dx.doi.org/10.1016/j.npep.2009.12.003 Amorim CE, Nogueira E, Almeida SS, Gomes PP, et al (2013). Clinical impact of an angiotensin I-converting enzyme insertion/deletion and kinin B2 receptor +9/-9 polymorphisms in the prognosis of renal transplantation. Biol. Chem. 394: 369-377. http://dx.doi.org/10.1515/hsz-2012-0314 Aulisa L, Papaleo P, Pola E, Angelini F, et al (2007). Association between IL-6 and MMP-3 gene polymorphisms and adolescent idiopathic scoliosis: a case-control study. Spine 32: 2700-2702. http://dx.doi.org/10.1097/BRS.0b013e31815a5943 Bray MS, Hagberg JM, Pérusse L, Rankinen T, et al (2009). The human gene map for performance and health-related fitness phenotypes: the 2006-2007 update. Med. Sci. Sports Exerc. 41: 35-73. http://dx.doi.org/10.1249/MSS.0b013e3181844179 Chagas JCM, Puertas EB and Filho JL (1993). Histochemical study of back rotator muscle of adolescent patient with idiopathic scoliosis. Rev. bras. ortop. 28: 125-128. Charbonneau DE, Hanson ED, Ludlow AT, Delmonico MJ, et al (2008). ACE genotype and the muscle hypertrophic and strength responses to strength training. Med. Sci. Sports Exerc. 40: 677-683. http://dx.doi.org/10.1249/MSS.0b013e318161eab9 Chen S, Zhao L, Roffey DM, Phan P, et al (2014). Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis in East Asians: a systematic review and meta-analysis. Spine J. 14: 2968-2975. http://dx.doi.org/10.1016/j.spinee.2014.05.019 Chen Z, Tang NL, Cao X, Qiao D, et al (2009). Promoter polymorphism of matrilin-1 gene predisposes to adolescent idiopathic scoliosis in a Chinese population. Eur. J. Hum. Genet. 17: 525-532. http://dx.doi.org/10.1038/ejhg.2008.203 Clarkson PM, Devaney JM, Gordish-Dressman H, Thompson PD, et al. (2005). ACTN3 genotype is associated with increases in muscle strength in response to resistance training in women. J. Appl. Physiol. 99: 154-163. Inoue M, Minami S, Nakata Y, Kitahara H, et al (2002). Association between estrogen receptor gene polymorphisms and curve severity of idiopathic scoliosis. Spine 27: 2357-2362. http://dx.doi.org/10.1097/00007632-200211010-00009 Jiang H, Qiu X, Dai J, Yan H, et al (2013). Association of rs11190870 near LBX1 with adolescent idiopathic scoliosis susceptibility in a Han Chinese population. Eur. Spine J. 22: 282-286. http://dx.doi.org/10.1007/s00586-012-2532-4 Jiang J, Qian B, Mao S, Zhao Q, et al (2012). A promoter polymorphism of tissue inhibitor of metalloproteinase-2 gene is associated with severity of thoracic adolescent idiopathic scoliosis. Spine 37: 41-47. http://dx.doi.org/10.1097/BRS.0b013e31820e71e3 Johnson MA, Polgar J, Weightman D, Appleton D, et al (1973). Data on the distribution of fibre types in thirty-six human muscles. An autopsy study. J. Neurol. Sci. 18: 111-129. http://dx.doi.org/10.1016/0022-510X(73)90023-3 King HA, Moe JH, Bradford DS, Winter RB, et al (1983). The selection of fusion levels in thoracic idiopathic scoliosis. J. Bone Joint Surg. Am. 65: 1302-1313. http://dx.doi.org/10.2106/00004623-198365090-00012 Kouwenhoven JW, Van Ommeren PM, Pruijs HE, Castelein RM, et al (2006). Spinal decompensation in neuromuscular disease. Spine 31: E188-E191. http://dx.doi.org/10.1097/01.brs.0000208131.42824.c3 Luciano RdeP, Puertas EB, Martins DE, Faloppa F, et al (2015). Adolescent idiopathic scoliosis without limb weakness: a differential diagnosis of core myopathy? BMC Musculoskelet. Disord. 16: 179. http://dx.doi.org/10.1186/s12891-015-0629-8 Macarthur DG, North KN, et al (2005). Genes and human elite athletic performance. Hum. Genet. 116: 331-339. http://dx.doi.org/10.1007/s00439-005-1261-8 Mannion AF, Meier M, Grob D, Müntener M, et al (1998). Paraspinal muscle fibre type alterations associated with scoliosis: an old problem revisited with new evidence. Eur. Spine J. 7: 289-293. http://dx.doi.org/10.1007/s005860050077 Meier MP, Klein MP, Krebs D, Grob D, et al (1997). Fiber transformations in multifidus muscle of young patients with idiopathic scoliosis. Spine 22: 2357-2364. http://dx.doi.org/10.1097/00007632-199710150-00008 North KN, Yang N, Wattanasirichaigoon D, Mills M, et al (1999). A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat. Genet. 21: 353-354. http://dx.doi.org/10.1038/7675 Ocaka L, Zhao C, Reed JA, Ebenezer ND, et al (2008). Assignment of two loci for autosomal dominant adolescent idiopathic scoliosis to chromosomes 9q31.2-q34.2 and 17q25.3-qtel. J. Med. Genet. 45: 87-92. http://dx.doi.org/10.1136/jmg.2007.051896 Ogilvie JW, Braun J, Argyle V, Nelson L, et al (2006). The search for idiopathic scoliosis genes. Spine 31: 679-681. http://dx.doi.org/10.1097/01.brs.0000202527.25356.90 Peng Y, Liang G, Pei Y, Ye W, et al (2012). Genomic polymorphisms of G-protein estrogen receptor 1 are associated with severity of adolescent idiopathic scoliosis. Int. Orthop. 36: 671-677. http://dx.doi.org/10.1007/s00264-011-1374-8 Qiu XS, Tang NL, Yeung HY, Qiu Y, et al (2008). Association study between adolescent idiopathic scoliosis and the DPP9 gene which is located in the candidate region identified by linkage analysis. Postgrad. Med. J. 84: 498-501. http://dx.doi.org/10.1136/pgmj.2007.066639 Reneland R, Haenni A, Andersson PE, Andrén B, et al (1999). Skeletal muscle angiotensin-converting enzyme and its relationship to blood pressure in primary hypertension and healthy elderly men. Blood Press. 8: 16-22. http://dx.doi.org/10.1080/080370599438347 Suh KT, Eun IS, Lee JS, et al (2010). Polymorphism in vitamin D receptor is associated with bone mineral density in patients with adolescent idiopathic scoliosis. Eur. Spine J. 19: 1545-1550. http://dx.doi.org/10.1007/s00586-010-1385-y Takahashi Y, Kou I, Takahashi A, Johnson TA, et al (2011). A genome-wide association study identifies common variants near LBX1 associated with adolescent idiopathic scoliosis. Nat. Genet. 43: 1237-1240. http://dx.doi.org/10.1038/ng.974 Thorstensson A, Carlson H, et al (1987). Fibre types in human lumbar back muscles. Acta Physiol. Scand. 131: 195-202. http://dx.doi.org/10.1111/j.1748-1716.1987.tb08226.x Wajchenberg M, Luciano RdeP, Araújo RC, Martins DE, et al (2013). Polymorphism of the ace gene and the α-actinin-3 gene in adolescent idiopathic scoliosis. Acta Ortop. Bras. 21: 170-174. http://dx.doi.org/10.1590/S1413-78522013000300009 Wajchenberg M, Martins DE, Luciano RdeP, Puertas EB, et al (2015). Histochemical analysis of paraspinal rotator muscles from patients with adolescent idiopathic scoliosis: a cross-sectional study. Medicine (Baltimore) 94: e598. http://dx.doi.org/10.1097/MD.0000000000000598 Wise CA, Barnes R, Gillum J, Herring JA, et al (2000). Localization of susceptibility to familial idiopathic scoliosis. Spine 25: 2372-2380. http://dx.doi.org/10.1097/00007632-200009150-00017 Wynne-Davies R, et al (1968). Familial (idiopathic) scoliosis. A family survey. J. Bone Joint Surg. Br. 50: 24-30. Yang Y, Wu Z, Zhao T, Wang H, et al (2009). Adolescent idiopathic scoliosis and the single-nucleotide polymorphism of the growth hormone receptor and IGF-1 genes. Orthopedics 32: 411. http://dx.doi.org/10.3928/01477447-20090511-08 Zhang B, Tanaka H, Shono N, Miura S, et al (2003). The I allele of the angiotensin-converting enzyme gene is associated with an increased percentage of slow-twitch type I fibers in human skeletal muscle. Clin. Genet. 63: 139-144. http://dx.doi.org/10.1034/j.1399-0004.2003.00029.x Zhao D, Qiu GX, Wang YP, Zhang JG, et al (2009). Association between adolescent idiopathic scoliosis with double curve and polymorphisms of calmodulin1 gene/estrogen receptor-α gene. Orthop. Surg. 1: 222-230. http://dx.doi.org/10.1111/j.1757-7861.2009.00038.x