Publications

Found 5 results
Filters: Author is V. Sipolatti  [Clear All Filters]
2012
M. V. D. Moraes, Milanez, M., Almada, B. V. P., Sipolatti, V., Rebouças, M. R. G. O., Nunes, V. R. R., Akel, Jr., A. N., Zatz, M., Errera, F. I. V., Louro, I. D., and Paula, F., Variable expressivity of osteogenesis imperfecta in a Brazilian family due to p.G1079S mutation in the COL1A1 gene, vol. 11, pp. 3246-3255, 2012.
Alanay Y, Avaygan H, Camacho N, Utine GE, et al. (2010). Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am. J. Hum. Genet. 86: 551-559. http://dx.doi.org/10.1016/j.ajhg.2010.02.022 PMid:20362275 PMCid:2850430   Bateman JF, Moeller I, Hannagan M, Chan D, et al. (1992). Characterization of three osteogenesis imperfecta collagen α1(I) glycine to serine mutations demonstrating a position-dependent gradient of phenotypic severity. Biochem. J. 288: 131-135. PMid:1445258 PMCid:1132089   Baum J and Brodsky B (1997). Real-time NMR investigations of triple-helix folding and collagen folding diseases. Fold. Des. 2: R53-R60. http://dx.doi.org/10.1016/S1359-0278(97)00028-X   Beck K, Chan VC, Shenoy N, Kirkpatrick A, et al. (2000). Destabilization of osteogenesis imperfecta collagen-like model peptides correlates with the identity of the residue replacing glycine. Proc. Natl. Acad. Sci. U. S. A. 97: 4273-4278. http://dx.doi.org/10.1073/pnas.070050097 PMid:10725403 PMCid:18226   Bhate M, Wang X, Baum J and Brodsky B (2002). Folding and conformational consequences of glycine to alanine replacements at different positions in a collagen model peptide. Biochemistry 41: 6539-6547. http://dx.doi.org/10.1021/bi020070d PMid:12009919   Buevich AV, Silva T, Brodsky B and Baum J (2004). Transformation of the mechanism of triple-helix peptide folding in the absence of a C-terminal nucleation domain and its implications for mutations in collagen disorders. J. Biol. Chem. 279: 46890-46895. http://dx.doi.org/10.1074/jbc.M407061200 PMid:15299012   Cabral WA, Mertts MV, Makareeva E, Colige A, et al. (2003). Type I collagen triplet duplication mutation in lethal osteogenesis imperfecta shifts register of alpha chains throughout the helix and disrupts incorporation of mutant helices into fibrils and extracellular matrix. J. Biol. Chem. 278: 10006-10012. http://dx.doi.org/10.1074/jbc.M212523200 PMid:12538651   Cabral WA, Chang W, Barnes AM, Weis M, et al. (2007). Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat. Genet. 39: 359-365. http://dx.doi.org/10.1038/ng1968 PMid:17277775   Chang W, Barnes AM, Cabral WA, Bodurtha JN, et al. (2010). Prolyl 3-hydroxylase 1 and CRTAP are mutually stabilizing in the endoplasmic reticulum collagen prolyl 3-hydroxylation complex. Hum. Mol. Genet. 19: 223-234. http://dx.doi.org/10.1093/hmg/ddp481 PMid:19846465 PMCid:2796888   Cohen-Solal L, Zolezzi F, Pignatti PF and Mottes M (1996). Intrafamilial variable expressivity of osteogenesis imperfecta due to mosaicism for a lethal G382R substitution in the COL1A1 gene. Mol. Cell Probes 10: 219-225. http://dx.doi.org/10.1006/mcpr.1996.0030 PMid:8799376   Dalgleish R (1998). The Human Collagen Mutation Database 1998. Nucleic Acids Res. 26: 253-255. http://dx.doi.org/10.1093/nar/26.1.253 PMid:9399846 PMCid:147171   Deodhar AA and Woolf AD (2000). Fragile without fractures. Ann. Rheum. Dis. 59: 166-171. http://dx.doi.org/10.1136/ard.59.3.166 PMid:10700422 PMCid:1753095   Forlino A, Cabral WA, Barnes AM and Marini JC (2011). New perspectives on osteogenesis imperfecta. Nat. Rev. Endocrinol. 7: 540-557. http://dx.doi.org/10.1038/nrendo.2011.81 PMid:21670757 PMCid:3443407   Fraser RDB, MacRae TP and Suzuki E (1979). Chain conformation in the collagen molecule. J. Mol. Biol. 129: 463-481. http://dx.doi.org/10.1016/0022-2836(79)90507-2   Galicka A, Wolczynski S, Gindzienski A, Surazynski A, et al. (2003). Gly511 to Ser substitution in the COL1A1 gene in osteogenesis imperfecta type III patient with increased turnover of collagen. Mol. Cell Biochem. 248: 49-56. http://dx.doi.org/10.1023/A:1024197213525 PMid:12870654   Gauba V and Hartgerink JD (2008). Synthetic collagen heterotrimers: structural mimics of wild-type and mutant collagen type I. J. Am. Chem. Soc. 130: 7509-7515. http://dx.doi.org/10.1021/ja801670v PMid:18481852   Glorieux FH, Rauch F, Plotkin H, Ward L, et al. (2000). Type V osteogenesis imperfecta: a new form of brittle bone disease. J. Bone Miner. Res. 15: 1650-1658. http://dx.doi.org/10.1359/jbmr.2000.15.9.1650 PMid:10976985   Glorieux FH, Ward LM, Rauch F, Lalic L, et al. (2002). Osteogenesis imperfecta type VI: a form of brittle bone disease with a mineralization defect. J. Bone Miner. Res. 17: 30-38. http://dx.doi.org/10.1359/jbmr.2002.17.1.30 PMid:11771667   Hartikka H, Kuurila K, Korkko J, Kaitila I, et al. (2004). Lack of correlation between the type of COL1A1 or COL1A2 mutation and hearing loss in osteogenesis imperfecta patients. Hum. Mutat. 24: 147-154. http://dx.doi.org/10.1002/humu.20071 PMid:15241796   Kaneko H, Kitoh H, Matsuura T, Masuda A, et al. (2011). Hyperuricemia cosegregating with osteogenesis imperfecta is associated with a mutation in GPATCH8. Hum. Genet. 130: 671-683. http://dx.doi.org/10.1007/s00439-011-1006-9 PMid:21594610   Körkkö J, Ala-Kokko L, De PA, Nuytinck L, et al. (1998). Analysis of the COL1A1 and COL1A2 genes by PCR amplification and scanning by conformation-sensitive gel electrophoresis identifies only COL1A1 mutations in 15 patients with osteogenesis imperfecta type I: identification of common sequences of null-allele mutations. Am. J. Hum. Genet. 62: 98-110. http://dx.doi.org/10.1086/301689 PMid:9443882 PMCid:1376813   Marini JC, Forlino A, Cabral WA, Barnes AM, et al. (2007). Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum. Mutat. 28: 209-221. http://dx.doi.org/10.1002/humu.20429 PMid:17078022   Morello R, Bertin TK, Chen Y, Hicks J, et al. (2006). CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127: 291-304. http://dx.doi.org/10.1016/j.cell.2006.08.039 PMid:17055431   Mottes M, Sangalli A, Valli M, Gomez LM, et al. (1992). Mild dominant osteogenesis imperfecta with intrafamilial variability: the cause is a serine for glycine α1(I) 901 substitution in a type-I collagen gene. Hum. Genet. 89: 480-484. http://dx.doi.org/10.1007/BF00219169 PMid:1634225   Namikawa C, Suzumori K, Fukushima Y, Sasaki M, et al. (1995). Recurrence of osteogenesis imperfecta because of paternal mosaicism: Gly862→Ser substitution in a type I collagen gene (COL1A1). Hum. Genet. 95: 666-670. http://dx.doi.org/10.1007/BF00209484 PMid:7789952   Primorac D, Rowe DW, Mottes M, Barisic I, et al. (2001). Osteogenesis imperfecta at the beginning of bone and joint decade. Croat Med. J. 42: 393-415. PMid:11471191   Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, et al. (2008). Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif. Tissue Int. 82: 263-270. http://dx.doi.org/10.1007/s00223-008-9113-x PMid:18311573   Sillence DO, Senn A and Danks DM (1979). Genetic heterogeneity in osteogenesis imperfecta. J. Med. Genet. 16: 101-116. http://dx.doi.org/10.1136/jmg.16.2.101 PMid:458828 PMCid:1012733   Van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, et al. (2009). PPIB mutations cause severe osteogenesis imperfecta. Am. J. Hum. Genet. 85: 521-527. http://dx.doi.org/10.1016/j.ajhg.2009.09.001 PMid:19781681 PMCid:2756556   Ward LM, Rauch F, Travers R, Chabot G et al. (2002). Osteogenesis imperfecta type VII: an autosomal recessive form of brittle bone disease. Bone 31: 12-18. http://dx.doi.org/10.1016/S8756-3282(02)00790-1   Westerhausen A, Kishi J and Prockop DJ (1990). Mutations that substitute serine for glycine alpha 1-598 and glycine α1- 631 in type I procollagen. The effects on thermal unfolding of the triple helix are position-specific and demonstrate that the protein unfolds through a series of cooperative blocks. J. Biol. Chem. 265: 13995-14000. PMid:2116413   Witecka J, Augusciak-Duma AM, Kruczek A, Szydlo A, et al. (2008). Two novel COL1A1 mutations in patients with osteogenesis imperfecta (OI) affect the stability of the collagen type I triple-helix. J. Appl. Genet. 49: 283-295. http://dx.doi.org/10.1007/BF03195625 PMid:18670065   Zhang ZL, Zhang H, Ke YH, Yue H, et al. (2012). The identification of novel mutations in COL1A1, COL1A2, and LEPRE1 genes in Chinese patients with osteogenesis imperfecta. J. Bone Miner. Metab. 30: 69-77. http://dx.doi.org/10.1007/s00774-011-0284-6 PMid:21667357