Publications

Found 9 results
Filters: Author is G. Picheth  [Clear All Filters]
2012
H. R. Frigeri, Santos, I. C. R., Réa, R. R., Almeida, A. C. R., Fadel-Picheth, C. M. T., Pedrosa, F. O., Souza, E. M., Rego, F. G. M., and Picheth, G., Low prevalence of glucokinase gene mutations in gestational diabetic patients with good glycemic control, vol. 11, pp. 1433-1441, 2012.
American Diabetes Association (2010). Diagnosis and classification of diabetes mellitus. Diabetes Care 33 (Suppl 1): S62-S69. http://dx.doi.org/10.2337/dc10-S062 PMid:20042775 PMCid:2797383   American Diabetes Association (2011). Diagnosis and classification of diabetes mellitus. Diabetes Care 34 (Suppl 1): S62-S69. http://dx.doi.org/10.2337/dc11-S062 PMid:21193628 PMCid:3006051   Arden C, Harbottle A, Baltrusch S, Tiedge M, et al. (2004). Glucokinase is an integral component of the insulin granules in glucose-responsive insulin secretory cells and does not translocate during glucose stimulation. Diabetes 53: 2346-2352. http://dx.doi.org/10.2337/diabetes.53.9.2346 PMid:15331544   Ben-Haroush A, Yogev Y and Hod M (2004). Epidemiology of gestational diabetes mellitus and its association with Type 2 diabetes. Diabet. Med. 21: 103-113. http://dx.doi.org/10.1046/j.1464-5491.2003.00985.x PMid:14984444   de la Iglesia N, Veiga-da-Cunha M, Van Schaftingen E, Guinovart JJ, et al. (1999). Glucokinase regulatory protein is essential for the proper subcellular localisation of liver glucokinase. FEBS Lett. 456: 332-338. http://dx.doi.org/10.1016/S0014-5793(99)00971-0   Ellard S, Beards F, Allen LI, Shepherd M, et al. (2000). A high prevalence of glucokinase mutations in gestational diabetic subjects selected by clinical criteria. Diabetologia 43: 250-253. http://dx.doi.org/10.1007/s001250050038 PMid:10753050   Gloyn AL (2003). Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum. Mutat. 22: 353-362. http://dx.doi.org/10.1002/humu.10277 PMid:14517946   Greeley SA, Tucker SE, Worrell HI, Skowron KB, et al. (2010). Update in neonatal diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 17: 13-19. PMid:19952737   Grundy SM, Cleeman JI, Daniels SR, Donato KA, et al. (2006). Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Curr. Opin. Cardiol. 21: 1-6. http://dx.doi.org/10.1097/01.hco.0000200416.65370.a0 PMid:16355022   Hayashi K (1991). PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. 1: 34-38. http://dx.doi.org/10.1101/gr.1.1.34 PMid:1842918   Hollingsworth DR and Grundy SM (1982). Pregnancy-associated hypertriglyceridemia in normal and diabetic women. Differences in insulin-dependent, non-insulin-dependent, and gestational diabetes. Diabetes 31: 1092-1097. PMid:6757021   Iynedjian PB (2009). Molecular physiology of mammalian glucokinase. Cell Mol. Life Sci. 66: 27-42. http://dx.doi.org/10.1007/s00018-008-8322-9 PMid:18726182 PMCid:2780631   Jetton TL, Liang Y, Pettepher CC, Zimmerman EC, et al. (1994). Analysis of upstream glucokinase promoter activity in transgenic mice and identification of glucokinase in rare neuroendocrine cells in the brain and gut. J. Biol. Chem. 269: 3641-3654. PMid:8106409   Knopp RH, Chapman M, Bergelin R, Wahl PW, et al. (1980). Relationships of lipoprotein lipids to mild fasting hyperglycemia and diabetes in pregnancy. Diabetes Care 3: 416-420. http://dx.doi.org/10.2337/diacare.3.3.416 PMid:7389557   Kousta E, Ellard S, Allen LI, Saker PJ, et al. (2001). Glucokinase mutations in a phenotypically selected multiethnic group of women with a history of gestational diabetes. Diabet. Med. 18: 683-684. http://dx.doi.org/10.1046/j.1464-5491.2001.00530.x PMid:11553210   Lahiri DK and Nurnberger JI Jr (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 19: 5444. http://dx.doi.org/10.1093/nar/19.19.5444 PMid:1681511 PMCid:328920   Liang Z, Dong M, Cheng Q and Chen D (2010). Gestational diabetes mellitus screening based on the gene chip technique. Diabetes Res. Clin. Pract. 89: 167-173. http://dx.doi.org/10.1016/j.diabres.2010.04.001 PMid:20554072   Magnuson MA and Shelton KD (1989). An alternate promoter in the glucokinase gene is active in the pancreatic beta cell. J. Biol. Chem. 264: 15936-15942. PMid:2550428   Marcinkevage JA and Narayan KM (2011). Gestational diabetes mellitus: taking it to heart. Prim. Care Diabetes 5: 81-88. http://dx.doi.org/10.1016/j.pcd.2010.10.002 PMid:21106447   Matschinsky FM (2009). Assessing the potential of glucokinase activators in diabetes therapy. Nat. Rev. Drug. Discov. 8: 399-416. http://dx.doi.org/10.1038/nrd2850 PMid:19373249   Matschinsky FM and Ellerman JE (1968). Metabolism of glucose in the islets of Langerhans. J. Biol. Chem. 243: 2730-2736. PMid:4870741   Matschinsky FM, Magnuson MA, Zelent D, Jetton TL, et al. (2006). The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes 55: 1-12. http://dx.doi.org/10.2337/diabetes.55.01.06.db05-0926 PMid:16380470   Metzger BE, Phelps RL, Freinkel N and Navickas IA (1980). Effects of gestational diabetes on diurnal profiles of plasma glucose, lipids, and individual amino acids. Diabetes Care 3: 402-409. PMid:7190092   Metzger BE, Lowe LP, Dyer AR, Trimble ER, et al. (2008). Hyperglycemia and adverse pregnancy outcomes. N. Engl. J. Med. 358: 1991-2002. http://dx.doi.org/10.1056/NEJMoa0707943 PMid:18463375   Meyers-Seifer CH and Vohr BR (1996). Lipid levels in former gestational diabetic mothers. Diabetes Care 19: 1351-1356. http://dx.doi.org/10.2337/diacare.19.12.1351 PMid:8941463   Orita M, Iwahana H, Kanazawa H, Hayashi K, et al. (1989). Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc. Natl. Acad. Sci. U. S. A. 86: 2766-2770. http://dx.doi.org/10.1073/pnas.86.8.2766 PMid:2565038 PMCid:286999   Osbak KK, Colclough K, Saint-Martin C, Beer NL, et al. (2009). Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 30: 1512-1526. http://dx.doi.org/10.1002/humu.21110 PMid:19790256   Printz RL, Magnuson MA and Granner DK (1993). Mammalian glucokinase. Annu. Rev. Nutr. 13: 463-496. http://dx.doi.org/10.1146/annurev.nu.13.070193.002335 PMid:8369155   Riskin-Mashiah S, Younes G, Damti A and Auslender R (2009). First-trimester fasting hyperglycemia and adverse pregnancy outcomes. Diabetes Care 32: 1639-1643. http://dx.doi.org/10.2337/dc09-0688 PMid:19549728 PMCid:2732138   Rivero K, Portal VL, Vieira M and Behle I (2008). Prevalence of the impaired glucose metabolism and its association with risk factors for coronary artery disease in women with gestational diabetes. Diabetes Res. Clin. Pract. 79: 433-437. http://dx.doi.org/10.1016/j.diabres.2007.10.015 PMid:18045723   Rose CS, Ek J, Urhammer SA, Glumer C, et al. (2005). A -30G>A polymorphism of the beta-cell-specific glucokinase promoter associates with hyperglycemia in the general population of whites. Diabetes 54: 3026-3031. http://dx.doi.org/10.2337/diabetes.54.10.3026 PMid:16186409   Rosenberg TJ, Garbers S, Lipkind H and Chiasson MA (2005). Maternal obesity and diabetes as risk factors for adverse pregnancy outcomes: differences among 4 racial/ethnic groups. Am. J. Public. Health 95: 1545-1551. http://dx.doi.org/10.2105/AJPH.2005.065680 PMid:16118366 PMCid:1449396   Rubio-Cabezas O, Klupa T and Malecki MT (2011). Permanent neonatal diabetes mellitus - the importance of diabetes differential diagnosis in neonates and infants. Eur. J. Clin. Invest. 41: 323-333. http://dx.doi.org/10.1111/j.1365-2362.2010.02409.x PMid:21054355   Ruzzo A, Andreoni F and Magnani M (1998). Structure of the human hexokinase type I gene and nucleotide sequence of the 5' flanking region. Biochem. J. 331 (Pt 2): 607-613. PMid:9531504 PMCid:1219395   Santos IC, Daga DR, Frigeri HR, Rea RR, et al. (2010a). The functional polymorphisms -429T>C and -374T>A of the RAGE gene promoter are not associated with gestational diabetes in Euro-Brazilians. Genet. Mol. Res. 9: 1130-1135. http://dx.doi.org/10.4238/vol9-2gmr817 PMid:20568058   Santos IC, Frigeri HR, Rea RR, Almeida AC, et al. (2010b). The glucokinase gene promoter polymorphism -30G>A (rs1799884) is associated with fasting glucose in healthy pregnant women but not with gestational diabetes. Clin. Chim. Acta 411: 892-893. http://dx.doi.org/10.1016/j.cca.2010.03.011 PMid:20227404   Schmidt MI, Matos MC, Reichelt AJ, Forti AC, et al. (2000). Prevalence of gestational diabetes mellitus - do the new WHO criteria make a difference? Brazilian Gestational Diabetes Study Group. Diabet. Med. 17: 376-380. http://dx.doi.org/10.1046/j.1464-5491.2000.00257.x PMid:10872537   Souza RL, Mikami LR, Maegawa RO and Chautard-Freire-Maia EA (2005). Four new mutations in the BCHE gene of human butyrylcholinesterase in a Brazilian blood donor sample. Mol. Genet. Metab. 84: 349-353. http://dx.doi.org/10.1016/j.ymgme.2004.12.005 PMid:15781196   Stoffel M, Froguel P, Takeda J, Zouali H, et al. (1992). Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc. Natl. Acad. Sci. U. S. A. 89: 7698-7702. http://dx.doi.org/10.1073/pnas.89.16.7698 PMid:1502186 PMCid:49778   Tinto N, Zagari A, Capuano M, De Simone A, et al. (2008). Glucokinase gene mutations: structural and genotype-phenotype analyses in MODY children from South Italy. PLoS One 3: e1870.   Weedon MN, Frayling TM, Shields B, Knight B, et al. (2005). Genetic regulation of birth weight and fasting glucose by a common polymorphism in the islet cell promoter of the glucokinase gene. Diabetes 54: 576-581. http://dx.doi.org/10.2337/diabetes.54.2.576 PMid:15677518
2011
F. A. Oliveira, Paludo, K. S., Arend, L. N. V. S., Farah, S. M. S. S., Pedrosa, F. O., Souza, E. M., Surek, M., Picheth, G., and Fadel-Picheth, C. M. T., Virulence characteristics and antimicrobial susceptibility of uropathogenic Escherichia coli strains, vol. 10, pp. 4114-4125, 2011.
Abe CM, Salvador FA, Falsetti IN, Vieira MA, et al. (2008). Uropathogenic Escherichia coli (UPEC) strains may carry virulence properties of diarrhoeagenic E. coli. FEMS Immunol. Med. Microbiol. 52: 397-406. http://dx.doi.org/10.1111/j.1574-695X.2008.00388.x PMid:18336383   Antão EM, Wieler LH and Ewers C (2009). Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut. Pathog. 1: 22.   Aranda KR, Fagundes-Neto U and Scaletsky IC (2004). Evaluation of multiplex PCRs for diagnosis of infection with diarrheagenic Escherichia coli and Shigella spp. J. Clin. Microbiol. 42: 5849-5853. http://dx.doi.org/10.1128/JCM.42.12.5849-5853.2004 PMid:15583323 PMCid:535216   Arslan H, Azap OK, Ergönül Ö and Timurkaynak F (2005). Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-adquired urinary tract infections in Turkey. J. Antimicrob. Chemother. 56: 914-918. http://dx.doi.org/10.1093/jac/dki344 PMid:16174685   Binns MM, Mayden J and Levine RP (1982). Further characterization of complement resistance conferred on Escherichia coli by the plasmid genes traT of R100 and iss of ColV,I-K94. Infect. Immun. 35: 654-659. PMid:7035371 PMCid:351091   Blanco M, Blanco JE, Alonso MP, Mora et al. (1997a). Detection of pap, sfa and afa adhesin-encoding operons in uropathogenic Escherichia coli strains: relationship with expression of adhesins and production of toxins. Res. Microbial. 148:745-755. http://dx.doi.org/10.1016/S0923-2508(97)82450-3   Blanco M, Blanco JE, Rodriguez E, Abalia I, et al. (1997b). Detection of virulence genes in uropathogenic Escherichia coli by polymerase chain reaction (PCR): comparison with results obtained using phenotypic methods. J. Clin. Micro. 31: 37-43.   Boehm DF, Welch RA and Snyder IS (1990). Domains of Escherichia coli hemolysin (HlyA) involved in binding of calcium and erythrocyte membranes. Infect. Immun. 58: 1959-1964. PMid:2187815 PMCid:258750   Chung A, Arianayagam M and Rashid P (2010). Bacterial cystitis in women. Aust. Fam. Physician. 39: 295-298. PMid:20485716   CLSI (2010). Performance Standards for Antimicrobial Susceptibility Testing; Twentieth Informational Supplement. Clinical and Laboratory Standards Institute, Wayne.   Guyer DM, Kao JS and Mobley HL (1998). Genomic analysis of a pathogenicity island in uropathogenic Escherichia coli CFT073: distribution of homologous sequences among isolates from patients with pyelonephritis, cystitis, and Catheter-associated bacteriuria and from fecal samples. Infect. Immun. 66: 4411-4417. PMid:9712795 PMCid:108533   Houdouin V, Bonacorsi S, Bidet P, Bingen-Bidois M, et al. (2006). Phylogenetic background and carriage of pathogenicity island-like domains in relation to antibiotic resistance profiles among Escherichia coli urosepsis isolates. J. Antimicrob. Chemother. 58: 748-751. http://dx.doi.org/10.1093/jac/dkl326 PMid:16905527   Johnson JR (1991). Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4: 80-128. PMid:1672263 PMCid:358180   Johnson JR and Stell AL (2000). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J. Infect. Dis. 181: 261-272. http://dx.doi.org/10.1086/315217 PMid:10608775   Johnson JR, Owens K, Gajewski A and Kuskowski MA (2005). Bacterial characteristics in relation to clinical source of Escherichia coli isolates from women with acute cystitis or pyelonephritis and uninfected women. J. Clin. Microbiol. 43: 6064-6072. http://dx.doi.org/10.1128/JCM.43.12.6064-6072.2005 PMid:16333100 PMCid:1317206   Kaper JB, Nataro JP and Mobley HL (2004). Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2: 123-140. http://dx.doi.org/10.1038/nrmicro818 PMid:15040260   Korhonen TK, Vaisanen-Rhen V, Rhen M, Pere A, et al. (1984). Escherichia coli fimbriae recognizing sialyl galactosides. J. Bacteriol. 159: 762-766. PMid:6146600 PMCid:215711   Lloyd AL, Rasko DA and Mobley HLT (2007). Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J. Bacteriol. 189: 3532-3546. http://dx.doi.org/10.1128/JB.01744-06 PMid:17351047 PMCid:1855899   Marrs CF, Zhang L, Tallman P, Manning SD, et al. (2002). Variations in 10 putative uropathogen virulence genes among urinary, faecal and peri-urethral Escherichia coli. J. Med. Microbiol. 51: 138-142. PMid:11863265   Marrs CF, Zhang L and Foxman B (2005). Escherichia coli mediated urinary tract infections: are there distinct uropathogenic E. coli (UPEC) pathotypes? FEMS Microbiol. Lett. 252: 183-190. http://dx.doi.org/10.1016/j.femsle.2005.08.028 PMid:16165319   McIsaac J, Mazzulli T, Moineddin R, Raboud J, et al. (2004). Uropathogen antibiotic resistance in adult women presenting to family physicians with acute uncomplicated cystitis. Can. J. Infect. Dis. Med. Microbiol. 15: 266-270.   Mellata M, Dho-Moulin M, Dozois CM, Curtiss R, III, et al. (2003). Role of virulence factors in resistance of avian pathogenic Escherichia coli to serum and in pathogenicity. Infect. Immun. 71: 536-540. http://dx.doi.org/10.1128/IAI.71.1.536-540.2003 PMid:12496207 PMCid:143143   Oelschlaeger TA, Dobrindt U and Hacker J (2002). Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int. J. Antimicrob. Agents 19: 517-521. http://dx.doi.org/10.1016/S0924-8579(02)00092-4   Ostolaza H and Goni FM (1995). Interaction of the bacterial protein toxin alpha-haemolysin with model membranes: protein binding does not always lead to lytic activity. FEBS Lett. 371: 303-306. http://dx.doi.org/10.1016/0014-5793(95)00927-2   Park HK, Jung YJ, Chae HC, Shin YJ, et al. (2009). Comparison of Escherichia coli uropathogenic genes (kps, usp and ireA) and enteroaggregative genes (aggR and aap) via multiplex polymerase chain reaction from suprapubic urine specimens of young children with fever. Scand. J. Urol. Nephrol. 43: 51-57. http://dx.doi.org/10.1080/00365590802299338 PMid:18759167   Piatti G, Mannini A, Balistreri M and Schito AM (2008). Virulence factors in urinary Escherichia coli strains: phylogenetic background and quinolone and fluoroquinolone resistance. J. Clin. Microbiol. 46: 480-487. http://dx.doi.org/10.1128/JCM.01488-07 PMid:18057134 PMCid:2238073   Roberts JA, Britt-Inger M, Ilver D, Haslam D, et al. (1994). The Gal(al-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc. Natl. Acad. Sci. U. S. A. 91: 11889-11893. http://dx.doi.org/10.1073/pnas.91.25.11889 PMid:7991552 PMCid:45341   Russo TA, Carlino UB, Mong A and Jodush ST (1999). Identification of genes in an extraintestinal isolate of Escherichia coli with increased expression after exposure to human urine. Infect. Immun. 67: 5306-5314. PMid:10496910 PMCid:96885   Santo E, Macedo C and Marin JM (2006). Virulence factors of uropathogenic Escherichia coli from a university hospital in Ribeirão Preto, São Paulo, Brazil. Rev. Inst. Med. Trop. São Paulo 48: 185-188. http://dx.doi.org/10.1590/S0036-46652006000400002 PMid:17119672   Scheffer J, Konig W, Braun V and Goebel W (1988). Comparison of four hemolysin-producing organisms (Escherichia coli, Serratia marcescens, Aeromonas hydrophila, and Listeria monocytogenes) for release of inflammatory mediators from various cells. J. Clin. Microbiol. 26: 544-551. PMid:2451679 PMCid:266329   Smith YC, Rasmussen SB, Grande KK, Conran RM, et al. (2008). Hemolysin of uropathogenic Escherichia coli evokes extensive shedding of the uroepithelium and hemorrhage in bladder tissue within the first 24 hours after intraurethral inoculation of mice. Infect. Immun. 76: 2978-2990. http://dx.doi.org/10.1128/IAI.00075-08 PMid:18443089 PMCid:2446707   Snyder JA, Haugen BJ, Buckles EL, Lockatell CV, et al. (2004). Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect. Immun. 72: 6373-6381. http://dx.doi.org/10.1128/IAI.72.11.6373-6381.2004 PMid:15501767 PMCid:523057   Stamm WE (2006). Theodore E. Woodward Award: host-pathogen interactions in community-acquired urinary tract infections. Trans. Am. Clin. Climatol. Assoc. 117: 75-83. PMid:18528465 PMCid:1500930   Takahashi A, Kanamaru S, Kurazono H, Kunishima Y, et al. (2006). Escherichia coli isolates associated with uncomplicated and complicated cystitis and asymptomatic bacteriuria possess similar phylogenies, virulence genes, and O-serogroup profiles. J. Clin. Microbiol. 44: 4589-4592. http://dx.doi.org/10.1128/JCM.02070-06 PMid:17065267 PMCid:1698404   Takahashi A, Muratani T, Yasuda M, Takahashi S, et al. (2009). Genetic profiles of fluoroquinolone-resistant Escherichia coli isolates obtained from patients with cystitis: phylogeny, virulence factors, PAIusp subtypes, and mutation patterns. J. Clin. Microbiol. 47: 791-795. http://dx.doi.org/10.1128/JCM.01740-08 PMid:19158256 PMCid:2650943   Talan DA, Krishnadasan A, Abrahamian FM, Stamm WE, et al. (2008). Prevalence and risk factor analysis of trimethoprim-sulfamethoxazole - and fluoroquinolone-resistant Escherichia coli infection among emergency department patients with pyelonephritis. Clin. Infect. Dis. 47: 1150-1158. http://dx.doi.org/10.1086/592250 PMid:18808361   Wiles TJ, Dhakal BK, Eto DS and Mulvey MA (2008a). Inactivation of host Akt/protein kinase B signaling by bacterial pore-forming toxins. Mol. Biol. Cell 19: 1427-1438. http://dx.doi.org/10.1091/mbc.E07-07-0638 PMid:18234841 PMCid:2291440   Wiles TJ, Kulesus RR and Mulvey MA (2008b). Origins and virulence mechanisms of uropathogenic Escherichia coli. Exp. Mol. Pathol. 85: 11-19. http://dx.doi.org/10.1016/j.yexmp.2008.03.007 PMid:18482721 PMCid:2595135   Yamamoto S, Terai A, Yuri K, Kurazono H, et al. (1995). Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol. Med. Microbiol. 12: 85-90. http://dx.doi.org/10.1111/j.1574-695X.1995.tb00179.x PMid:8589667   Zhang L and Foxman B (2003). Molecular epidemiology of Escherichia coli mediated urinary tract infections. Front Biosci. 8: e235-e244. http://dx.doi.org/10.2741/1007 PMid:12456300
2010
I. C. R. Santos, Daga, D. R., Frigeri, H. R., Réa, R. R., Almeida, A. C. R., Souza, E. M., Pedrosa, F. O., Fadel-Picheth, C. M. T., and Picheth, G., The functional polymorphisms -429T>C and -374T>A of the RAGE gene promoter are not associated with gestational diabetes in Euro-Brazilians, vol. 9. pp. 1130-1135, 2010.
Bierhaus A and Nawroth PP (2009). Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 52: 2251-2263. http://dx.doi.org/10.1007/s00125-009-1458-9 PMid:19636529   Bierhaus A, Humpert PM, Morcos M, Wendt T, et al. (2005). Understanding RAGE, the receptor for advanced glycation end products. J. Mol. Med. 83: 876-886. http://dx.doi.org/10.1007/s00109-005-0688-7 PMid:16133426   Bucciarelli LG, Wendt T, Rong L, Lalla E, et al. (2002). RAGE is a multiligand receptor of the immunoglobulin superfamily: implications for homeostasis and chronic disease. Cell Mol. Life Sci. 59: 1117-1128. http://dx.doi.org/10.1007/s00018-002-8491-x PMid:12222959   Dos Santos KG, Canani LH, Gross JL, Tschiedel B, et al. (2005). The -374A allele of the receptor for advanced glycation end products gene is associated with a decreased risk of ischemic heart disease in African-Brazilians with type 2 diabetes. Mol. Genet. Metab. 85: 149-156. http://dx.doi.org/10.1016/j.ymgme.2005.02.010 PMid:15896660   Falcone C, Campo I, Emanuele E, Buzzi MP, et al. (2004). Relationship between the -374T/A RAGE gene polymorphism and angiographic coronary artery disease. Int. J. Mol. Med. 14: 1061-1064. PMid:15547674   Hudson BI, Stickland MH, Futers TS and Grant PJ (2001a). Effects of novel polymorphisms in the RAGE gene on transcriptional regulation and their association with diabetic retinopathy. Diabetes 50: 1505-1511. http://dx.doi.org/10.2337/diabetes.50.6.1505 PMid:11375354   Hudson BI, Stickland MH, Grant PJ and Futers TS (2001b). Characterization of allelic and nucleotide variation between the RAGE gene on chromosome 6 and a homologous pseudogene sequence to its 5' regulatory region on chromosome 3: implications for polymorphic studies in diabetes. Diabetes 50: 2646-2651. http://dx.doi.org/10.2337/diabetes.50.12.2646 PMid:11723045   JiXiong X, BiLin X, MingGong Y and ShuQin L (2003). -429T/C and -374T/A polymorphisms of RAGE gene promoter are not associated with diabetic retinopathy in Chinese patients with type 2 diabetes. Diabetes Care 26: 2696-2697.   Kankova K, Stejskalova A, Hertlova M and Znojil V (2005). Haplotype analysis of the RAGE gene: identification of a haplotype marker for diabetic nephropathy in type 2 diabetes mellitus. Nephrol. Dial. Transplant. 20: 1093-1102. http://dx.doi.org/10.1093/ndt/gfh711 PMid:15790669   Kirbis J, Milutinovic A, Steblovnik K, Teran N, et al. (2004). The -429 T/C and -374 T/A gene polymorphisms of the receptor of advanced glycation end products gene (RAGE) are not risk factors for coronary artery disease in Slovene population with type 2 diabetes. Coll. Antropol. 28: 611-616. PMid:15666591   Lahiri DK and Nurnberger JI Jr (1991). A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 19: 5444. http://dx.doi.org/10.1093/nar/19.19.5444 PMid:1681511 PMCid:328920   Langer O, Yogev Y, Xenakis EM and Brustman L (2005). Overweight and obese in gestational diabetes: the impact on pregnancy outcome. Am. J. Obstet. Gynecol. 192: 1768-1776. http://dx.doi.org/10.1016/j.ajog.2004.12.049 PMid:15970805   Lappas M, Permezel M and Rice GE (2007). Advanced glycation endproducts mediate pro-inflammatory actions in human gestational tissues via nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J. Endocrinol. 193: 269- 277. http://dx.doi.org/10.1677/JOE-06-0081 PMid:17470518   Lindholm E, Bakhtadze E, Sjogren M, Cilio CM, et al. (2006). The -374 T/A polymorphism in the gene encoding RAGE is associated with diabetic nephropathy and retinopathy in type 1 diabetic patients. Diabetologia 49: 2745-2755. http://dx.doi.org/10.1007/s00125-006-0412-3 PMid:16969646   NCBI (2009). Single nucleotide polymorphism (NCBI). Available at [http://www.ncbi.nlm.nih.gov/projects/SNP/ (search rs1800624 and rs1800625)]. Accessed December 10, 2009.   Nizard J and Ville Y (2009). The fetus of a diabetic mother: sonographic evaluation. Semin. Fetal Neonatal Med. 14: 101-105. http://dx.doi.org/10.1016/j.siny.2008.10.001 PMid:19167940   Pertynska-Marczewska M, Glowacka E, Sobczak M, Cypryk K, et al. (2009). Glycation endproducts, soluble receptor for advanced glycation endproducts and cytokines in diabetic and non-diabetic pregnancies. Am. J. Reprod. Immunol. 61: 175-182. http://dx.doi.org/10.1111/j.1600-0897.2008.00679.x PMid:19143681   Picheth G, Heidemann M, Pedrosa FO, Chautard-Freire-Maia EA, et al. (2007). The -429 T>C polymorphism of the receptor for advanced glycation end products (RAGE) is associated with type 1 diabetes in a Brazilian population. Clin. Chim. Acta 383: 163-164. http://dx.doi.org/10.1016/j.cca.2007.03.026 PMid:17512509   Schmidt AM, Hori O, Cao R, Yan SD, et al. (1996). RAGE: a novel cellular receptor for advanced glycation end products. Diabetes 45 (Suppl 3): S77-S80. PMid:8674899   Wiznitzer A, Mayer A, Novack V, Sheiner E, et al. (2009). Association of lipid levels during gestation with preeclampsia and gestational diabetes mellitus: a population-based study. Am. J. Obstet. Gynecol. 201: 482-488. http://dx.doi.org/10.1016/j.ajog.2009.05.032 PMid:19631920