Publications

Found 3 results
Filters: Author is M. Costache  [Clear All Filters]
2012
L. M. Magdalena, Coipan, E. C., Vladimirescu, A. F., Savu, L., Costache, M., and Gavrila, L., Downregulation of hsp22 gene expression in Drosophila melanogaster from sites located near chemical plants, vol. 11, pp. 739-745, 2012.
Bettencourt BR, Feder ME and Cavicchi S (1999). Experimental evolution of Hsp70 expression and thermotolerance in Drosophila melanogaster. Evolution 53: 484-492. http://dx.doi.org/10.2307/2640784 Chintapalli VR, Wang J and Dow JAT (2007). Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat. Genet. 39: 715-720. http://dx.doi.org/10.1038/ng2049 PMid:17534367 Colinet H, Nguyen TT, Cloutier C, Michaud D, et al. (2007). Proteomic profiling of a parasitic wasp exposed to constant and fluctuating cold exposure. Insect Biochem. Mol. Biol. 37: 1177-1188. http://dx.doi.org/10.1016/j.ibmb.2007.07.004 PMid:17916504 Colinet H, Lee SF and Hoffmann A (2010). Temporal expression of heat shock genes during cold stress and recovery from chill coma in adult Drosophila melanogaster. FEBS J. 277: 174-185. http://dx.doi.org/10.1111/j.1742-4658.2009.07470.x PMid:19968716 Concannon CG, Gorman AM and Samali A (2003). On the role of Hsp27 in regulating apoptosis. Apoptosis 8: 61-70. http://dx.doi.org/10.1023/A:1021601103096 PMid:12510153 Edwards AC, Zwarts L, Yamamoto A, Callaerts P, et al. (2009). Mutations in many genes affect aggressive behavior in Drosophila melanogaster. BMC Biol. 7: 29. http://dx.doi.org/10.1186/1741-7007-7-29 PMid:19519879    PMCid:2707370 Feder ME and Hofmann GE (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61: 243-282. http://dx.doi.org/10.1146/annurev.physiol.61.1.243 PMid:10099689 Frydenberg J, Hoffmann AA and Loeschcke V (2003). DNA sequence variation and latitudinal associations in hsp23, hsp26 and hsp27 from natural populations of Drosophila melanogaster. Mol. Ecol. 12: 2025-2032. http://dx.doi.org/10.1046/j.1365-294X.2002.01882.x PMid:12859626 Gong WJ and Golic KG (2006). Loss of Hsp70 in Drosophila is pleiotropic, with effects on thermotolerance, recovery from heat shock and neurodegeneration. Genetics 172: 275-286. http://dx.doi.org/10.1534/genetics.105.048793 PMid:16204210    PMCid:1456155 Hercus MJ, Loeschcke V and Rattan SI (2003). Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4: 149-156. http://dx.doi.org/10.1023/A:1024197806855 PMid:12815314 Hoffmann AA and Parsons PA (1991). Evolutionary Genetics and Environmental Stress. Oxford University Press, New York. Hoffmann AA, Sørensen JG and Loeschcke V (2003). Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol. 28: 175-216. http://dx.doi.org/10.1016/S0306-4565(02)00057-8 Kim M and Denlinger DL (2009). Decrease in expression of beta-tubulin and microtubule abundance in flight muscles during diapause in adults of Culex pipiens. Insect Mol. Biol. 18: 295-302. http://dx.doi.org/10.1111/j.1365-2583.2009.00870.x PMid:19523062 Köhler HR, Zanger M, Eckwert H and Einfeldt I (2000). Selection favours low Hsp70 levels in chronically metal-stressed soil arthropods. J. Evol. Biol. 13: 569-582. http://dx.doi.org/10.1046/j.1420-9101.2000.00210.x Lansing E, Justesen J and Loeschcke V (2000). Variation in the expression of Hsp70, the major heat-shock protein, and thermotolerance in larval and adult selection lines of Drosophila melanogaster. J. Therm. Biol. 25: 443-450. http://dx.doi.org/10.1016/S0306-4565(00)00008-5 Lauter N and Doebley J (2002). Genetic variation for phenotypically invariant traits detected in teosinte: implications for the evolution of novel forms. Genetics 160: 333-342. PMid:11805068    PMCid:1461939 Livak KJ and Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. Mitchell-Olds T and Knight CA (2002). Evolution. Chaperones as buffering agents? Science 296: 2348-2349. http://dx.doi.org/10.1126/science.1073846 PMid:12089432 Morrow G, Samson M, Michaud S and Tanguay RM (2004). Overexpression of the small mitochondrial Hsp22 extends Drosophila life span and increases resistance to oxidative stress. FASEB J. 18: 598-599. PMid:14734639 Parsell DA and Lindquist S (1993). The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu. Rev. Genet. 27: 437-496. http://dx.doi.org/10.1146/annurev.ge.27.120193.002253 PMid:8122909 Rako L and Hoffmann AA (2006). Complexity of the cold acclimation response in Drosophila melanogaster. J. Insect Physiol. 52: 94-104. http://dx.doi.org/10.1016/j.jinsphys.2005.09.007 PMid:16257412 Rojas RR and Leopold RA (1996). Chilling injury in the housefly: evidence for the role of oxidative stress between pupariation and emergence. Cryobiology 33: 447-458. http://dx.doi.org/10.1006/cryo.1996.0045 Sørensen JG and Loeschcke V (2002). Decreased heat-shock resistance and down-regulation of Hsp70 expression with increasing age in adult Drosophila melanogaster. Funct. Ecol. 16: 379-384. http://dx.doi.org/10.1046/j.1365-2435.2002.00639.x Sørensen JG, Michalak P, Justesen J and Loeschcke V (1999). Expression of the heat-shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance. Hereditas 131: 155-164. PMid:10680297 Sørensen JG, Kristensen TN and Loeschcke V (2003). The evolutionary and ecological role of heat shock proteins. Ecol. Lett. 6: 1025-1037. http://dx.doi.org/10.1046/j.1461-0248.2003.00528.x Sun Y and MacRae TH (2005). Small heat shock proteins: molecular structure and chaperone function. Cell Mol. Life Sci. 62: 2460-2476. http://dx.doi.org/10.1007/s00018-005-5190-4 PMid:16143830 Tammariello SP, Rinehart JP and Denlinger DL (1999). Desiccation elicits heat shock protein transcription in the flesh fly, Sarcophaga crassipalpis, but does not enhance tolerance to high or low temperatures. J. Insect Physiol. 45: 933-938. http://dx.doi.org/10.1016/S0022-1910(99)00073-6 Van Hiel BM, Van Wielendaele P, Temmerman L and Van Soest S (2009). Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol. Biol. 10: 56. http://dx.doi.org/10.1186/1471-2199-10-56 PMid:19508726    PMCid:2700112 Yi SX, Moore CW and Lee RE Jr (2007). Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis. Apoptosis 12: 1183-1193. http://dx.doi.org/10.1007/s10495-006-0048-2 PMid:17245639
2011
S. E. Georgescu, Manea, M. A., Dudu, A., and Costache, M., Phylogenetic relationships of the Hucul horse from Romania inferred from mitochondrial D-loop variation, vol. 10, pp. 4104-4113, 2011.
Aberle KS, Hamann H, Drogemuller C and Distl O (2007). Phylogenetic relationships of German heavy draught horse breeds inferred from mitochondrial DNA D-loop variation. J. Anim. Breed. Genet. 124: 94-100. http://dx.doi.org/10.1111/j.1439-0388.2007.00636.x PMid:17488360   Bandelt HJ, Forster P and Rohl A (1999). Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16: 37-48. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026036 PMid:10331250   Bowling AT, Del VA and Bowling M (2000). A pedigree-based study of mitochondrial D-loop DNA sequence variation among Arabian horses. Anim. Genet. 31: 1-7. http://dx.doi.org/10.1046/j.1365-2052.2000.00558.x PMid:10690354   Cieslak M, Pruvost M, Benecke N, Hofreiter M, et al. (2010). Origin and history of mitochondrial DNA lineages in domestic horses. PLoS One 5: e15311. http://dx.doi.org/10.1371/journal.pone.0015311 PMid:21187961 PMCid:3004868   Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp. 41: 95-98.   Ishida N, Hasegawa T, Takeda K, Sakagami M, et al. (1994). Polymorphic sequence in the D-loop region of equine mitochondrial DNA. Anim. Genet. 25: 215-221. http://dx.doi.org/10.1111/j.1365-2052.1994.tb00196.x PMid:7985837   Jansen T, Forster P, Levine MA, Oelke H, et al. (2002). Mitochondrial DNA and the origins of the domestic horse. Proc. Natl. Acad. Sci. U. S. A. 99: 10905-10910. http://dx.doi.org/10.1073/pnas.152330099 PMid:12130666 PMCid:125071   Kavar T and Dovc P (2008). Domestication of the horse: Genetic relationships between domestic and wild horses. Livest. Sci. 116: 1-14. http://dx.doi.org/10.1016/j.livsci.2008.03.002   Kavar T, Habe F, Brem G and Dovc P (1999). Mitochondrial D-loop sequence variation among the 16 maternal lines of the Lipizzan horse breed. Anim. Genet. 30: 423-430. http://dx.doi.org/10.1046/j.1365-2052.1999.00557.x PMid:10612231   Kim KI, Yang YH, Lee SS, Park C, et al. (1999). Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism. Anim. Genet. 30: 102-108. http://dx.doi.org/10.1046/j.1365-2052.1999.00419.x PMid:10376300   Kimura M (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. http://dx.doi.org/10.1007/BF01731581 PMid:7463489   Larkin MA, Blackshields G, Brown NP, Chenna R, et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404 PMid:17846036   Lopes MS, Mendonça D, Cymbron T, Valera M, et al. (2005). The Lusitano horse maternal lineage based on mitochondrial D-loop sequence variation. Anim. Genet. 36: 196-202. http://dx.doi.org/10.1111/j.1365-2052.2005.01279.x PMid:15932397   McGahern AM, Edwards CJ, Bower MA, Heffernan A, et al. (2006). Mitochondrial DNA sequence diversity in extant Irish horse populations and in ancient horses. Anim. Genet. 37: 498-502. http://dx.doi.org/10.1111/j.1365-2052.2006.01506.x PMid:16978181   Posada D and Crandall KA (2001). Intraspecific gene genealogies: trees grafting into networks. Trends Ecol. Evol. 16: 37-45. http://dx.doi.org/10.1016/S0169-5347(00)02026-7   Tamura K, Dudley J, Nei M and Kumar S (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738   Vila C, Leonard JA, Gotherstrom A, Marklund S, et al. (2001). Widespread origins of domestic horse lineages. Science 291: 474-477. http://dx.doi.org/10.1126/science.291.5503.474 PMid:11161199   Xu X and Arnason U (1994). The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene 148: 357-362. http://dx.doi.org/10.1016/0378-1119(94)90713-7   Xu X, Gullberg A and Arnason U (1996). The complete mitochondrial DNA (mtDNA) of the donkey and mtDNA comparisons among four closely related mammalian species-pairs. J. Mol. Evol. 43: 438-446. http://dx.doi.org/10.1007/BF02337515 PMid:8875857   Yang YH, Kim KI, Cothran EG and Flannery AR (2002). Genetic diversity of Cheju horses (Equus caballus) determined by using mitochondrial DNA D-loop polymorphism. Biochem. Genet. 40: 175-186. http://dx.doi.org/10.1023/A:1015884125507 PMid:12137332