Publications
Found 42 results
Filters: Author is P. Wang [Clear All Filters]
“Expression and clinical significance of the obesity-related gene TNFAIP9 in obese children”, vol. 15, p. -, 2016.
, “Expression and clinical significance of the obesity-related gene TNFAIP9 in obese children”, vol. 15, p. -, 2016.
, “Fine mapping and characterization of the or gene in Chinese cabbage (Brassica rapa L. ssp pekinensis)”, vol. 15, p. -, 2016.
, “Fine mapping and characterization of the or gene in Chinese cabbage (Brassica rapa L. ssp pekinensis)”, vol. 15, p. -, 2016.
, “Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying”, vol. 15, p. -, 2016.
, “Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying”, vol. 15, p. -, 2016.
, “GSTP1 Ile105Val and XRCC1 Arg399Gln gene polymorphisms contribute to the clinical outcome of patients with advanced non-small cell lung cancer”, vol. 15, p. -, 2016.
, “GSTP1 Ile105Val and XRCC1 Arg399Gln gene polymorphisms contribute to the clinical outcome of patients with advanced non-small cell lung cancer”, vol. 15, p. -, 2016.
, “HPV genotype analysis for women in Shaanxi Province of China”, vol. 15, no. 4, p. -, 2016.
, Conflicts of interestThe authors declare no conflict of interest.ACKNOWLEDGMENTSWe thank all the patients who were enrolled to this study. REFERENCESBory JP, Cucherousset J, Lorenzato M, Gabriel R, et al (2002). Recurrent human papillomavirus infection detected with the hybrid capture II assay selects women with normal cervical smears at risk for developing high grade cervical lesions: a longitudinal study of 3,091 women. Int. J. Cancer 102: 519-525. http://dx.doi.org/10.1002/ijc.10735 Clifford GM, Smith JS, Plummer M, Muñoz N, et al (2003). Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br. J. Cancer 88: 63-73. http://dx.doi.org/10.1038/sj.bjc.6600688 Dai HY, Zhang XJ, et al (2013). Study on subtype age distribution and multiple infection of human papillomavirus (HPV) in Yongchuan area of Chongqion. Chongqing Med. 42: 619-621. de Sanjosé S, Diaz M, Castellsagué X, Clifford G, et al (2007). Worldwide prevalence and genotype distribution of cervical human papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect. Dis. 7: 453-459. http://dx.doi.org/10.1016/S1473-3099(07)70158-5 Doorbar J, et al (2006). Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. 110: 525-541. http://dx.doi.org/10.1042/CS20050369 Fan WS, Li YL, Yang YZ, Sun Z, et al (2009). Clinical analysis of human papillomavirus in paraffin-embedded cervical lesion tissues by gene chip technology. Chin. J. Nosocomiol. 19: 745-747. Garcia-Echeverria C, Sellers WR, et al (2008). Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27: 5511-5526. http://dx.doi.org/10.1038/onc.2008.246 Jiang D, Ye JD, Zhang XP, Xu A, et al (2012). Analysis of infection of among 10000 female migrant population in Shenzhen. Chin. J. of PHM 28: 796-798. Kong DX, Qu QX, et al (2009). Expression and their correlation of COX-2 and VEGF-C in cervical cancer. J. Int. Obstet. Gynecol 36: 151-153. Lee SA, Kang D, Seo SS, Jeong JK, et al (2003). Multiple HPV infection in cervical cancer screened by HPVDNAChip. Cancer Lett. 198: 187-192. http://dx.doi.org/10.1016/S0304-3835(03)00312-4 Li C, Wu M, Wang J, Zhang S, et al (2010). A population-based study on the risks of cervical lesion and human papillomavirus infection among women in Beijing, People’s Republic of China. Cancer Epidemiol. Biomarkers Prev. 19: 2655-2664. http://dx.doi.org/10.1158/1055-9965.EPI-10-0212 Muñoz N, Bosch FX, de Sanjosé S, Herrero R, International Agency for Research on Cancer Multicenter Cervical Cancer Study Groupet al (2003). Epidemiologic classification of human papillomavirus types associated with cervical cancer. N. Engl. J. Med. 348: 518-527. http://dx.doi.org/10.1056/NEJMoa021641 Sandri MT, Riggio D, Salvatici M, Passerini R, et al (2009). Typing of human papillomavirus in women with cervical lesions: prevalence and distribution of different genotypes. J. Med. Virol. 81: 271-277. http://dx.doi.org/10.1002/jmv.21382 Wang Y, Wu ZZ, Zhou QY, et al (2010). Epidemiological characteristics of cervical human papillomavirus women in Gansu. Matern. Child Health Care China 25: 5371-5373. Woodman CB, Collins S, Winter H, Bailey A, et al (2001). Natural history of cervical human papillomavirus infection in young women: a longitudinal cohort study. Lancet 357: 1831-1836. http://dx.doi.org/10.1016/S0140-6736(00)04956-4 Yang J, Zhou DP, Chen FX, Peng JH, et al (2012). Investigation and analysis on HPV infection status of 2497 patients with gynecological disease in Chongqing. J. Chongqing Med. Univ. 37: 347-349. Zhang JS, Geng JX, Han CR, Liu X, et al (2013). Study on human papillomavirus genetic profile in 3678 cervical cell samples of married women. Int. Lab. Med. 34: 439-441. Zhao R, Zhang WY, Wu MH, Zhang SW, et al (2009). Human papillomavirus infection in Beijing, People’s Republic of China: a population-based study. Br. J. Cancer 101: 1635-1640. http://dx.doi.org/10.1038/sj.bjc.6605351
“miR-204 suppresses non-small-cell lung carcinoma (NSCLC) invasion and migration by targeting JAK2”, vol. 15, p. -, 2016.
, “miR-204 suppresses non-small-cell lung carcinoma (NSCLC) invasion and migration by targeting JAK2”, vol. 15, p. -, 2016.
, “Prevalence of human papillomavirus genotypes among women with cervical lesions in the Shaanxi Province of China”, vol. 15, p. -, 2016.
, “Prevalence of human papillomavirus genotypes among women with cervical lesions in the Shaanxi Province of China”, vol. 15, p. -, 2016.
, “Prevalence of human papillomavirus genotypes among women with cervical lesions in the Shaanxi Province of China”, vol. 15, p. -, 2016.
, “Study on quality standards for Chimonanthus nitens”, vol. 15, p. -, 2016.
, “Study on quality standards for Chimonanthus nitens”, vol. 15, p. -, 2016.
, “Association between polymorphism of β3-adrenoceptor gene and overactive bladder: a meta-analysis”, vol. 14, pp. 2495-2501, 2015.
, “Characterization of a TIR-NBS-LRR gene associated with downy mildew resistance in grape”, vol. 14, pp. 7964-7975, 2015.
, “Cloning, sequence characterization, and expression patterns of members of the porcine TSSK family”, vol. 14, pp. 14908-14919, 2015.
, “Complete mitochondrial genome of the Chinese Hwamei Garrulax canorus (Aves: Passeriformes): the first representative of the Leiothrichidae family with a duplicated control region”, vol. 14, pp. 8964-8976, 2015.
, “Correlations among copeptin, ischemia-modified albumin, and the extent of myocardial injury in patients with acute carbon monoxide poisoning”, vol. 14, pp. 10384-10389, 2015.
, “Determination of the potential of induced pluripotent stem cells to differentiate into mouse nucleus pulposus cells in vitro”, vol. 14, pp. 12394-12405, 2015.
, “Performance of peanut mutants and their offspring generated from mixed high-energy particle field radiation and tissue culture”, vol. 14, pp. 10837-10848, 2015.
, “Protein expression and characterization of SEP3 from Arabidopsis thaliana”, vol. 14, pp. 12529-12536, 2015.
, “Role of heme oxygenase-1 in demethylating effects on SKM-1 cells induced by decitabine”, vol. 14, pp. 17788-17798, 2015.
, “Alteration of coenzyme specificity of malate dehydrogenase from Streptomyces coelicolor A3(2) by site-directed mutagenesis”, vol. 13, pp. 5758-5766, 2014.
, “Cloning and functional prediction of differentially expressed genes in the leaves of Glycine max parents and hybrids at the seedling stage”, vol. 13, pp. 5474-5483, 2014.
, “Effects of acrylonitrile on lymphocyte lipid rafts and RAS/RAF/MAPK/ERK signaling pathways”, vol. 13, pp. 7747-7756, 2014.
, “Genetic diversity analysis of okra (Abelmoschus esculentus L.) by inter-simple sequence repeat (ISSR) markers”, vol. 13, pp. 3165-3175, 2014.
, “Meta-analysis demonstrates no association between XRCC1 Arg399Gln polymorphism and bladder cancer risk”, vol. 13, pp. 9976-9985, 2014.
, “Multidrug resistance gene and its relationship to ulcerative colitis and immune status of ulcerative colitis”, vol. 13, pp. 10837-10851, 2014.
, “Serum thyroid hormone reference intervals in the apparently healthy individuals of Zhengzhou area of China”, vol. 13, pp. 7275-7281, 2014.
, “Survey of attitude and knowledge of reproductive health among middle school students in Luoyang, China”, vol. 13, pp. 6168-6176, 2014.
, “Urinary nerve growth factor levels could be a biomarker for overactive bladder symptom: a meta-analysis”, vol. 13, pp. 8609-8619, 2014.
, “Colorectal cancer susceptibility variants alter risk of breast cancer in a Chinese Han population”, vol. 12, pp. 6268-6274, 2013.
, , “Analysis of the role of hMLH1 hypermethylation and microsatellite instability in meningioma progression”, vol. 11, pp. 3933-3941, 2012.
,
Alvino E, Fernandez E and Pallini R (2000). Microsatellite instability in primary brain tumors. Neurol. Res. 22: 571-575.
PMid:11045018
Baylin SB and Herman JG (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16: 168-174.
http://dx.doi.org/10.1016/S0168-9525(99)01971-X
Bello MJ, Aminoso C, Lopez-Marin I, Arjona D, et al. (2004). DNA methylation of multiple promoter-associated CpG islands in meningiomas: relationship with the allelic status at 1p and 22q. Acta Neuropathol. 108: 413-421.
http://dx.doi.org/10.1007/s00401-004-0911-6
PMid:15365725
Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, et al. (1998). A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 58: 5248-5257.
PMid:9823339
Cunningham JM, Christensen ER, Tester DJ, Kim CY, et al. (1998). Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res. 58: 3455-3460.
PMid:9699680
Dams E, Van de Kelft EJ, Martin JJ, Verlooy J, et al. (1995). Instability of microsatellites in human gliomas. Cancer Res. 55: 1547-1549.
PMid:7882363
Deng G, Chen A, Hong J, Chae HS, et al. (1999). Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res. 59: 2029-2033.
PMid:10232580
Dietmaier W, Wallinger S, Bocker T, Kullmann F, et al. (1997). Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res. 57: 4749-4756.
PMid:9354436
Dong SM, Pang JC, Poon WS, Hu J, et al. (2001). Concurrent hypermethylation of multiple genes is associated with grade of oligodendroglial tumors. J. Neuropathol. Exp. Neurol. 60: 808-816.
PMid:11487055
Esteller M, Catasus L, Matias-Guiu X, Mutter GL, et al. (1999). hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am. J. Pathol. 155: 1767-1772.
http://dx.doi.org/10.1016/S0002-9440(10)65492-2
Fleisher AS, Esteller M, Tamura G, Rashid A, et al. (2001). Hypermethylation of the hMLH1 gene promoter is associated with microsatellite instability in early human gastric neoplasia. Oncogene 20: 329-335.
http://dx.doi.org/10.1038/sj.onc.1204104
PMid:11313962
Herman JG, Umar A, Polyak K, Graff JR, et al. (1998). Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. U. S. A. 95: 6870-6875.
http://dx.doi.org/10.1073/pnas.95.12.6870
PMid:9618505 PMCid:22665
Kulke MH, Thakore KS, Thomas G, Wang H, et al. (2001). Microsatellite instability and hMLH1/hMSH2 expression in Barrett esophagus-associated adenocarcinoma. Cancer 91: 1451-1457.
http://dx.doi.org/10.1002/1097-0142(20010415)91:8<1451::AID-CNCR1152>3.0.CO;2-Z
Leung SY, Yuen ST, Chung LP, Chu KM, et al. (1999). hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res. 59: 159-164.
PMid:9892201
Liu Y, Pang JC, Dong S, Mao B, et al. (2005). Aberrant CpG island hypermethylation profile is associated with atypical and anaplastic meningiomas. Hum. Pathol. 36: 416-425.
http://dx.doi.org/10.1016/j.humpath.2005.02.006
PMid:15892004
Longstreth WT Jr, Dennis LK, McGuire VM, Drangsholt MT, et al. (1993). Epidemiology of intracranial meningioma. Cancer 72: 639-648.
http://dx.doi.org/10.1002/1097-0142(19930801)72:3<639::AID-CNCR2820720304>3.0.CO;2-P
Lundin DA, Blank A, Berger MS and Silber JR (1998). Microsatellite instability is infrequent in sporadic adult gliomas. Oncol. Res. 10: 421-428.
PMid:10100759
Ng HK, Lau KM, Tse JY, Lo KW, et al. (1995). Combined molecular genetic studies of chromosome 22q and the neurofibromatosis type 2 gene in central nervous system tumors. Neurosurgery 37: 764-773.
http://dx.doi.org/10.1227/00006123-199510000-00022
PMid:8559307
Perry A, Stafford SL, Scheithauer BW, Suman VJ, et al. (1997). Meningioma grading: an analysis of histologic parameters. Am. J. Surg. Pathol. 21: 1455-1465.
http://dx.doi.org/10.1097/00000478-199712000-00008
PMid:9414189
Perry A, Scheithauer BW, Stafford SL, Lohse CM, et al. (1999). "Malignancy" in meningiomas: a clinicopathologic study of 116 patients, with grading implications. Cancer 85: 2046-2056.
http://dx.doi.org/10.1002/(SICI)1097-0142(19990501)85:9<2046::AID-CNCR23>3.0.CO;2-M
Perry A, Giannini C, Raghavan R, Scheithauer BW, et al. (2001). Aggressive phenotypic and genotypic features in pediatric and NF2-associated meningiomas: a clinicopathologic study of 53 cases. J. Neuropathol. Exp. Neurol. 60: 994-1003.
PMid:11589430
Pykett MJ, Murphy M, Harnish PR and George DL (1994). Identification of a microsatellite instability phenotype in meningiomas. Cancer Res. 54: 6340-6343.
PMid:7987826
Radner H, Blumcke I, Reifenberger G and Wiestler OD (2002). The new WHO classification of tumors of the nervous system 2000. Pathology and genetics. Pathologe 23: 260-283.
http://dx.doi.org/10.1007/s00292-002-0530-8
PMid:12185780
Salvesen HB, MacDonald N, Ryan A, Iversen OE, et al. (2000). Methylation of hMLH1 in a population-based series of endometrial carcinomas. Clin. Cancer Res. 6: 3607-3613.
PMid:10999752
Sambrook J, Fritsh EF and Maniatis T (1989). Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, New York.
Simpkins SB, Bocker T, Swisher EM, Mutch DG, et al. (1999). MLH1 promoter methylation and gene silencing is the primary cause of microsatellite instability in sporadic endometrial cancers. Hum. Mol. Genet. 8: 661-666.
http://dx.doi.org/10.1093/hmg/8.4.661
PMid:10072435
Skotheim RI, Diep CB, Kraggerud SM, Jakobsen KS, et al. (2001). Evaluation of loss of heterozygosity/allelic imbalance scoring in tumor DNA. Cancer Genet. Cytogenet. 127: 64-70.
http://dx.doi.org/10.1016/S0165-4608(00)00433-7
Sobrido MJ, Pereira CR, Barros F, Forteza J, et al. (2000). Low frequency of replication errors in primary nervous system tumours. J. Neurol. Neurosurg. Psychiatry 69: 369-375.
http://dx.doi.org/10.1136/jnnp.69.3.369
PMid:10945812 PMCid:1737093
Thibodeau SN, Bren G and Schaid D (1993). Microsatellite instability in cancer of the proximal colon. Science 260: 816- 819.
http://dx.doi.org/10.1126/science.8484122
PMid:8484122
Ueki K, Wen-Bin C, Narita Y, Asai A, et al. (1999). Tight association of loss of merlin expression with loss of heterozygosity at chromosome 22q in sporadic meningiomas. Cancer Res. 59: 5995-5998.
PMid:10606247
Veigl ML, Kasturi L, Olechnowicz J, Ma AH, et al. (1998). Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc. Natl. Acad. Sci. U. S. A. 95: 8698-8702.
http://dx.doi.org/10.1073/pnas.95.15.8698
PMid:9671741 PMCid:21139
Wellenreuther R, Kraus JA, Lenartz D, Menon AG, et al. (1995). Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma. Am. J. Pathol. 146: 827-832.
PMid:7717450 PMCid:1869258
Wirtz HC, Müller W, Noguchi T, Scheven M, et al. (1998). Prognostic value and clinicopathological profile of microsatellite instability in gastric cancer. Clin. Cancer Res. 4: 1749-1754.
PMid:9676851
Zhu J, Guo SZ, Beggs AH, Maruyama T, et al. (1996). Microsatellite instability analysis of primary human brain tumors. Oncogene 12: 1417-1423.
PMid:8622857
“Microsatellite markers for assessing genetic diversity of the medicinal plant Paris polyphylla var. chinensis (Trilliaceae)”, vol. 11, pp. 1975-1980, 2012.
,
Belkhir KP, Borsa P, Chikhi L, Raufaste N, et al. (2001). GENETIX, Logiciel Sous WindowsTM Pour la Génétique des Populations. Laboratoire Génome, Populations, Interactions CNRS UMR 5000. Université de Montpellier II, Montpellier.
Bloor PA, Barker FS, Watts PC, Noyes HA, et al. (2001). Microsatellite Libraries by Enrichment. Available at [http://www.genomics.liv.ac.uk/animal/MICROSAT.PDF]. Accessed January 2002.
Cabral PD, Soares TC, Lima AB, de Miranda FD, et al. (2011). Genetic diversity in local and commercial dry bean (Phaseolus vulgaris) accessions based on microsatellite markers. Genet. Mol. Res. 10: 140-149.
http://dx.doi.org/10.4238/vol10-1gmr993
PMid:21308655
Chakraborty R, Kimmel M, Stivers DN, Davison LJ, et al. (1997). Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proc. Natl. Acad. Sci. U. S. A. 94: 1041-1046.
http://dx.doi.org/10.1073/pnas.94.3.1041
PMid:9023379 PMCid:19636
Demir K, Bakir M, Sarikamis G and Acunalp S (2010). Genetic diversity of eggplant (Solanum melongena) germplasm from Turkey assessed by SSR and RAPD markers. Genet. Mol. Res. 9: 1568-1576.
http://dx.doi.org/10.4238/vol9-3gmr878
PMid:20714999
Doyle JJ and Doyle JL (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11-15.
Ellegren H (2004). Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5: 435-445.
http://dx.doi.org/10.1038/nrg1348
PMid:15153996
Goncalves LS, Rodrigues R, do Amaral Junior AT, Karasawa M, et al. (2009). Heirloom tomato gene bank: assessing genetic divergence based on morphological, agronomic and molecular data using a Ward-modified location model. Genet. Mol. Res. 8: 364-374.
http://dx.doi.org/10.4238/vol8-1gmr549
PMid:19440972
Ji S, Zhou TS and Chang CJ (2001). Determination of anti tumor cytotoxic active substance gracillin in Rhizoma Paridis and yunnan white. Chin. Tradit. Patent Med. 23: 212-215.
Leal AA, Mangolin CA, do Amaral ATJ, Goncalves LS, et al. (2010). Efficiency of RAPD versus SSR markers for determining genetic diversity among popcorn lines. Genet. Mol. Res. 9: 9-18.
http://dx.doi.org/10.4238/vol9-1gmr692
PMid:20082266
Li H (1986). A study on the taxonomy of the genus Paris L. Bull. Bot. Res. 6: 109-144.
Li H, Yang X, Liang H, Wei Z, et al. (1998). The Genus Paris (Trilliaceae). Science Press, Beijing.
Liang SY and Soukup VG (2000). Paris L. In: Flora of China (Wu ZY and Raven PH, eds.). Vol. 24. Science Press, Beijing, Missouri Botanical Garden Press, St. Louis.
Nei M, Maruyama T and Chakraborty R (1975). The bottleneck effect and genetic variability in populations. Evolution 29: 1-10.
http://dx.doi.org/10.2307/2407137
Oliveira EC, Amaral Junior AT, Goncalves LS, Pena GF, et al. (2010). Optimizing the efficiency of the touchdown technique for detecting inter-simple sequence repeat markers in corn (Zea mays). Genet. Mol. Res. 9: 835-842.
http://dx.doi.org/10.4238/vol9-2gmr767
PMid:20449816
R aymond M and Rousset F (1995). GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86: 248-249.
Roa AC, Chavarriaga-Aguirre P, Duque MC, Maya MM, et al. (2000). Cross-species amplification of cassava (Manihot esculenta) (Euphorbiaceae) microsatellites: allelic polymorphism and degree of relationship. Am. J. Bot. 87: 1647-1655.
http://dx.doi.org/10.2307/2656741
PMid:11080115
Schlötterer C (2004). The evolution of molecular markers - just a matter of fashion? Nat. Rev. Genet. 5: 63-69.
http://dx.doi.org/10.1038/nrg1249
PMid:14666112
Sharma PC, Grover A and Kahl G (2007). Mining microsatellites in eukaryotic genomes. Trends Biotechnol. 25: 490-498.
http://dx.doi.org/10.1016/j.tibtech.2007.07.013
PMid:17945369
van Oosterhout C, Hutchinson WF, Wills DPM and Shipley P (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4: 535-538.
http://dx.doi.org/10.1111/j.1471-8286.2004.00684.x
Vieira EA, Carvalho FIF, Bertan I, Kopp MM, et al. (2007). Association between genetic distances in wheat (Triticum aestivum L.) as estimated by AFLP and morphological markers. Genet. Mol. Biol. 30: 392-399.
http://dx.doi.org/10.1590/S1415-47572007000300016
Wu SS, Gao WY, Duan HQ and Jia W (2004). Advances in studies on chemical constituents and pharmacological activities of Rhizoma paridis. Chin. Tradit. Herb. Drugs. 3: 344-347.
“Role of CASP-10 gene polymorphisms in cancer susceptibility: a HuGE review and meta-analysis”, vol. 11, pp. 3998-4007, 2012.
,
Alison MR and Sarraf CE (1992). Apoptosis: a gene-directed programme of cell death. J. R. Coll. Physicians Lond. 26: 25-35.
PMid:1315390
Boatright KM and Salvesen GS (2003). Mechanisms of caspase activation. Curr. Opin. Cell Biol. 15: 725-731.
http://dx.doi.org/10.1016/j.ceb.2003.10.009
PMid:14644197
Doonan F and Cotter TG (2008). Morphological assessment of apoptosis. Methods 44: 200-204.
http://dx.doi.org/10.1016/j.ymeth.2007.11.006
PMid:18314050
Frank B, Hemminki K, Wappenschmidt B, Meindl A, et al. (2006). Association of the CASP10 V410I variant with reduced familial breast cancer risk and interaction with the CASP8 D302H variant. Carcinogenesis 27: 606-609.
http://dx.doi.org/10.1093/carcin/bgi248
PMid:16251207
Gaudet MM, Milne RL, Cox A, Camp NJ, et al. (2009). Five polymorphisms and breast cancer risk: results from the Breast Cancer Association Consortium. Cancer Epidemiol. Biomarkers Prev. 18: 1610-1616.
http://dx.doi.org/10.1158/1055-9965.EPI-08-0745
PMid:19423537 PMCid:2737177
Ghavami S, Hashemi M, Ande SR, Yeganeh B, et al. (2009). Apoptosis and cancer: mutations within caspase genes. J. Med. Genet. 46: 497-510.
http://dx.doi.org/10.1136/jmg.2009.066944
PMid:19505876
Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558.
http://dx.doi.org/10.1002/sim.1186
PMid:12111919
Hosgood HD, III, Baris D, Zhang Y, Zhu Y, et al. (2008). Caspase polymorphisms and genetic susceptibility to multiple myeloma. Hematol. Oncol. 26: 148-151.
http://dx.doi.org/10.1002/hon.852
PMid:18381704 PMCid:2586415
Kim MS, Oh JE, Min CK, Lee S, et al. (2009). Mutational analysis of CASP10 gene in acute leukaemias and multiple myelomas. Pathology 41: 484-487.
http://dx.doi.org/10.1080/00313020903041143
PMid:19900088
Kumar S (2004). Measurement of caspase activity in cells undergoing apoptosis. Methods Mol. Biol. 282: 19-30.
PMid:15105554
Lan Q, Zheng T, Chanock S, Zhang Y, et al. (2007). Genetic variants in caspase genes and susceptibility to non-Hodgkin lymphoma. Carcinogenesis 28: 823-827.
http://dx.doi.org/10.1093/carcin/bgl196
PMid:17071630
Li C, Zhao H, Hu Z, Liu Z, et al. (2008). Genetic variants and haplotypes of the caspase-8 and caspase-10 genes contribute to susceptibility to cutaneous melanoma. Hum. Mutat. 29: 1443-1451.
http://dx.doi.org/10.1002/humu.20803
PMid:18563783 PMCid:2937220
MacPherson G, Healey CS, Teare MD, Balasubramanian SP, et al. (2004). Association of a common variant of the CASP8 gene with reduced risk of breast cancer. J. Natl. Cancer Inst. 96: 1866-1869.
http://dx.doi.org/10.1093/jnci/dji001
PMid:15601643
Nicholson DW (1996). ICE/CED3-like proteases as therapeutic targets for the control of inappropriate apoptosis. Nat. Biotechnol. 14: 297-301.
http://dx.doi.org/10.1038/nbt0396-297
PMid:9630889
Nicholson DW and Thornberry NA (1997). Caspases: killer proteases. Trends Biochem. Sci. 22: 299-306.
http://dx.doi.org/10.1016/S0968-0004(97)01085-2
Niles AL, Moravec RA and Riss TL (2008). Caspase activity assays. Methods Mol. Biol. 414: 137-150.
PMid:18175817
Oh JE, Kim MS, Ahn CH, Kim SS, et al. (2010). Mutational analysis of CASP10 gene in colon, breast, lung and hepatocellular carcinomas. Pathology 42: 73-76.
http://dx.doi.org/10.3109/00313020903434371
PMid:20025484
Park WS, Lee JH, Shin MS, Park JY, et al. (2002). Inactivating mutations of the caspase-10 gene in gastric cancer. Oncogene 21: 2919-2925.
http://dx.doi.org/10.1038/sj.onc.1205394
PMid:11973654
Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680.
http://dx.doi.org/10.1001/jama.295.6.676
PMid:16467236
Rupinder SK, Gurpreet AK and Manjeet S (2007). Cell suicide and caspases. Vascul. Pharmacol. 46: 383-393.
http://dx.doi.org/10.1016/j.vph.2007.01.006
PMid:17382599
Shin MS, Kim HS, Kang CS, Park WS, et al. (2002). Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood 99: 4094-4099.
http://dx.doi.org/10.1182/blood.V99.11.4094
PMid:12010812
Ulybina YM, Kuligina ES, Mitiushkina NV, Rozanov ME, et al. (2009). Coding polymorphisms in Casp5, Casp8 and DR4 genes may play a role in predisposition to lung cancer. Cancer Lett. 278: 183-191.
http://dx.doi.org/10.1016/j.canlet.2009.01.012
PMid:19203830
von Elm E, Altman DG, Egger M, Pocock SJ, et al. (2007). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology 18: 800-804.
http://dx.doi.org/10.1097/EDE.0b013e3181577654
PMid:18049194
Wang J, Chun HJ, Wong W, Spencer DM, et al. (2001). Caspase-10 is an initiator caspase in death receptor signaling. Proc. Natl. Acad. Sci. U. S. A. 98: 13884-13888.
http://dx.doi.org/10.1073/pnas.241358198
PMid:11717445 PMCid:61136
Ye YF (2004). Polymorphisms of Caspase-8, -10 Genes and Their Relationship with Pathogenesis of Non-Hodgkin lymphoma. Master's thesis, Zhejiang University School of Medicine, Zhejiang.
Zhang L, Liu JL, Zhang YJ and Wang H (2011). Association between HLA-B*27 polymorphisms and ankylosing spondylitis in Han populations: a meta-analysis. Clin. Exp. Rheumatol. 29: 285-292.
PMid:21418777
Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137.
http://dx.doi.org/10.1002/gepi.20048
PMid:15593093
“Expression of aquaporin-4 in human supratentorial meningiomas with peritumoral brain edema and correlation of VEGF with edema formation”, vol. 10, pp. 2165-2171, 2011.
, Bitzer M, Wockel L, Morgalla M, Keller C, et al. (1997a). Peritumoural brain oedema in intracranial meningiomas: influence of tumour size, location and histology. Acta Neurochir. 139: 1136-1142.
http://dx.doi.org/10.1007/BF01410973
PMid:9479419
Bitzer M, Wockel L, Luft AR, Wakhloo AK, et al. (1997b). The importance of pial blood supply to the development of peritumoral brain edema in meningiomas. J. Neurosurg. 87: 368-373.
http://dx.doi.org/10.3171/jns.1997.87.3.0368
PMid:9285600
Bitzer M, Opitz H, Popp J, Morgalla M, et al. (1998). Angiogenesis and brain oedema in intracranial meningiomas: influence of vascular endothelial growth factor. Acta Neurochir. 140: 333-340.
http://dx.doi.org/10.1007/s007010050106
PMid:9689324
Campbell BA, Jhamb A, Maguire JA, Toyota B, et al. (2009). Meningiomas in 2009: controversies and future challenges. Am. J. Clin. Oncol. 32: 73-85.
http://dx.doi.org/10.1097/COC.0b013e31816fc920
PMid:19194129
Ding YS, Wang HD, Tang K, Hu ZG, et al. (2008). Expression of vascular endothelial growth factor in human meningiomas and peritumoral brain areas. Ann. Clin. Lab. Sci. 38: 344-351.
PMid:18988927
Goldman CK, Bharara S, Palmer CA, Vitek J, et al. (1997). Brain edema in meningiomas is associated with increased vascular endothelial growth factor expression. Neurosurgery 40: 1269-1277.
http://dx.doi.org/10.1097/00006123-199706000-00029
PMid:9179901
Ide M, Jimbo M, Kubo O, Yamamoto M, et al. (1992). Peritumoral brain edema associated with meningioma-histological study of the tumor margin and surrounding brain. Neurol. Med. Chir. 32: 65-71.
http://dx.doi.org/10.2176/nmc.32.65
PMid:1376862
Jung JS, Bhat RV, Preston GM, Guggino WB, et al. (1994). Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc. Natl. Acad. Sci. U. S. A. 91: 13052-13056.
http://dx.doi.org/10.1073/pnas.91.26.13052
Kalkanis SN, Carroll RS, Zhang J, Zamani AA, et al. (1996). Correlation of vascular endothelial growth factor messenger RNA expression with peritumoral vasogenic cerebral edema in meningiomas. J. Neurosurg. 85: 1095-1101.
http://dx.doi.org/10.3171/jns.1996.85.6.1095
PMid:8929501
Klatzo I (1994). Evolution of brain edema concepts. Acta Neurochir. Suppl. 60: 3-6.
Machein MR and Plate KH (2000). VEGF in brain tumors. J. Neurooncol. 50: 109-120.
http://dx.doi.org/10.1023/A:1006416003964
PMid:11245271
Ng WH, Hy JW, Tan WL, Liew D, et al. (2009). Aquaporin-4 expression is increased in edematous meningiomas. J. Clin. Neurosci. 16: 441-443.
http://dx.doi.org/10.1016/j.jocn.2008.04.028
PMid:19153045
Otsuka S, Tamiya T, Ono Y, Michiue H, et al. (2004). The relationship between peritumoral brain edema and the expression of vascular endothelial growth factor and its receptors in intracranial meningiomas. J. Neurooncol. 70: 349-357.
http://dx.doi.org/10.1007/s11060-004-9164-4
PMid:15662977
Provias J, Claffey K, delAguila L, Lau N, et al. (1997). Meningiomas: role of vascular endothelial growth factor/vascular permeability factor in angiogenesis and peritumoral edema. Neurosurgery 40: 1016-1026.
http://dx.doi.org/10.1097/00006123-199705000-00027
PMid:9149260
Saadoun S, Papadopoulos MC, Davies DC, Krishna S, et al. (2002). Aquaporin-4 expression is increased in oedematous human brain tumours. J. Neurol. Neurosurg. Psychiatry 72: 262-265.
http://dx.doi.org/10.1136/jnnp.72.2.262
PMid:50411
Tait MJ, Saadoun S, Bell BA and Papadopoulos MC (2008). Water movements in the brain: role of aquaporins. Trends Neurosci. 31: 37-43.
http://dx.doi.org/10.1016/j.tins.2007.11.003
PMid:18054802
Yoshioka H, Hama S, Taniguchi E, Sugiyama K, et al. (1999). Peritumoral brain edema associated with meningioma: influence of vascular endothelial growth factor expression and vascular blood supply. Cancer 85: 936-944.
http://dx.doi.org/10.1002/(SICI)1097-0142(19990215)85:4<936::AID-CNCR23>3.0.CO;2-J
“Meta-analysis demonstrates no association between p53 codon 72 polymorphism and prostate cancer risk”, vol. 10, pp. 2924-2933, 2011.
, Coughlin SS and Hall IJ (2002). A review of genetic polymorphisms and prostate cancer risk. Ann. Epidemiol. 12: 182- 196.
http://dx.doi.org/10.1016/S1047-2797(01)00310-6
Guimaraes DP and Hainaut P (2002). TP53: a key gene in human cancer. Biochimie 84: 83-93.
http://dx.doi.org/10.1016/S0300-9084(01)01356-6
Henner WD, Evans AJ, Hough KM, Harris EL, et al. (2001). Association of codon 72 polymorphism of p53 with lower prostate cancer risk. Prostate 49: 263-266.
http://dx.doi.org/10.1002/pros.10021
PMid:11746272
Higgins JP and Thompson SG (2002). Quantifying heterogeneity in a meta-analysis. Stat. Med. 21: 1539-1558.
http://dx.doi.org/10.1002/sim.1186
PMid:12111919
Hollstein M, Sidransky D, Vogelstein B and Harris CC (1991). p53 mutations in human cancers. Science 253: 49-53.
http://dx.doi.org/10.1126/science.1905840
PMid:1905840
Hsing AW and Chokkalingam AP (2006). Prostate cancer epidemiology. Front. Biosci. 11: 1388-1413.
http://dx.doi.org/10.2741/1891
PMid:16368524
Huang SP, Wu WJ, Chang WS, Wu MT, et al. (2004). p53 Codon 72 and p21 codon 31 polymorphisms in prostate cancer. Canc. Epidemiol. Biomarkers Prev. 13: 2217-2224.
PMid:15598783
Jemal A, Siegel R, Xu J and Ward E (2010). Cancer statistics, 2010. CA Cancer J. Clin. 60: 277-300.
http://dx.doi.org/10.3322/caac.20073
PMid:20610543
Katkoori VR, Jia X, Shanmugam C, Wan W, et al. (2009). Prognostic significance of p53 codon 72 polymorphism differs with race in colorectal adenocarcinoma. Clin. Cancer Res. 15: 2406-2416.
http://dx.doi.org/10.1158/1078-0432.CCR-08-1719
PMid:19339276
Klug SJ, Ressing M, Koenig J, Abba MC, et al. (2009). TP53 codon 72 polymorphism and cervical cancer: a pooled analysis of individual data from 49 studies. Lancet Oncol. 10: 772-784.
http://dx.doi.org/10.1016/S1470-2045(09)70187-1
Leiros GJ, Galliano SR, Sember ME, Kahn T, et al. (2005). Detection of human papillomavirus DNA and p53 codon 72 polymorphism in prostate carcinomas of patients from Argentina. BMC Urol. 5: 15.
http://dx.doi.org/10.1186/1471-2490-5-15
PMid:16307686 PMCid:1314892
Lesko SM, Rosenberg L and Shapiro S (1996). Family history and prostate cancer risk. Am. J. Epidemiol. 144: 1041-1047.
PMid:8942435
Levine AJ (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323-331.
http://dx.doi.org/10.1016/S0092-8674(00)81871-1
Levine AJ, Momand J and Finlay CA (1991). The p53 tumour suppressor gene. Nature 351: 453-456.
http://dx.doi.org/10.1038/351453a0
PMid:2046748
Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, et al. (2000). Environmental and heritable factors in the causation of cancer - analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343: 78-85.
http://dx.doi.org/10.1056/NEJM200007133430201
PMid:10891514
Mechanic LE, Bowman ED, Welsh JA, Khan MA, et al. (2007). Common genetic variation in TP53 is associated with lung cancer risk and prognosis in African Americans and somatic mutations in lung tumors. Cancer Epidemiol. Biomarkers Prev. 16: 214-222.
http://dx.doi.org/10.1158/1055-9965.EPI-06-0790
Pegoraro RJ, Moodley M, Rom L, Chetty R, et al. (2003). P53 codon 72 polymorphism and BRCA 1 and 2 mutations in ovarian epithelial malignancies in black South Africans. Int. J. Gynecol. Cancer 13: 444-449.
http://dx.doi.org/10.1046/j.1525-1438.2003.13333.x
PMid:12911720
Peters JL, Sutton AJ, Jones DR, Abrams KR, et al. (2006). Comparison of two methods to detect publication bias in meta-analysis. JAMA 295: 676-680.
http://dx.doi.org/10.1001/jama.295.6.676
PMid:16467236
Quinones LA, Irarrazabal CE, Rojas CR, Orellana CE, et al. (2006). Joint effect among p53, CYP1A1, GSTM1 polymorphism combinations and smoking on prostate cancer risk: an exploratory genotype-environment interaction study. Asian J. Androl. 8: 349-355.
http://dx.doi.org/10.1111/j.1745-7262.2006.00135.x
PMid:16625286
Ricks-Santi L, Mason T, Apprey V, Ahaghotu C, et al. (2010). p53 Pro72Arg polymorphism and prostate cancer in men of African descent. Prostate 70: 1739-1745.
PMid:20593380 PMCid:3057117
Shepherd T, Tolbert D, Benedetti J, Macdonald J, et al. (2000). Alterations in exon 4 of the p53 gene in gastric carcinoma. Gastroenterology 118: 1039-1044.
http://dx.doi.org/10.1016/S0016-5085(00)70356-8
Suzuki K, Matsui H, Ohtake N, Nakata S, et al. (2003). A p53 codon 72 polymorphism associated with prostate cancer development and progression in Japanese. J. Biomed. Sci. 10: 430-435.
http://dx.doi.org/10.1007/BF02256434
PMid:12824702
Tsai MH, Lin CD, Hsieh YY, Chang FC, et al. (2002). Prognostic significance of the proline form of p53 codon 72 polymorphism in nasopharyngeal carcinoma. Laryngoscope 112: 116-119.
http://dx.doi.org/10.1097/00005537-200201000-00020
PMid:11802048
Vandenbroucke JP, von Elm E, Altman DG, Gøtzsche PC, et al. (2007). STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Epidemiology 18: 805-835.
http://dx.doi.org/10.1097/EDE.0b013e3181577511
PMid:18049195
Viechtbauer W (2007). Confidence intervals for the amount of heterogeneity in meta-analysis. Stat. Med. 26: 37-52.
http://dx.doi.org/10.1002/sim.2514
PMid:16463355
Wang YC, Chen CY, Chen SK, Chang YY, et al. (1999). p53 codon 72 polymorphism in Taiwanese lung cancer patients: association with lung cancer susceptibility and prognosis. Clin. Cancer Res. 5: 129-134.
PMid:9918210
Wu HC, Chang CH, Chen HY, Tsai FJ, et al. (2004). p53 gene codon 72 polymorphism but not tumor necrosis factor-alpha gene is associated with prostate cancer. Urol. Int. 73: 41-46.
http://dx.doi.org/10.1159/000078803
PMid:15263792
Wu WJ, Kakehi Y, Habuchi T, Kinoshita H, et al. (1995). Allelic frequency of p53 gene codon 72 polymorphism in urologic cancers. Jpn. J. Cancer Res. 86: 730-736.
http://dx.doi.org/10.1111/j.1349-7006.1995.tb02461.x
Zhou Y, Li N, Zhuang W, Liu GJ, et al. (2007). P53 codon 72 polymorphism and gastric cancer: a meta-analysis of the literature. Int. J. Cancer 121: 1481-1486.
http://dx.doi.org/10.1002/ijc.22833
PMid:17546594
Zintzaras E and Ioannidis JP (2005). Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol. 28: 123-137.
http://dx.doi.org/10.1002/gepi.20048
PMid:15593093
“A potential indicator of denervated muscle atrophy: the ratio of myostatin to follistatin in peripheral blood”, vol. 10, pp. 3914-3923, 2011.
,
Amthor H, Nicholas G, McKinnell I, Kemp CF, et al. (2004). Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev. Biol. 270: 19-30.
http://dx.doi.org/10.1016/j.ydbio.2004.01.046
PMid:15136138
Diel P, Schiffer T, Geisler S, Hertrampf T, et al. (2010). Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR. Mol. Cell Endocrinol. 330: 1-9.
http://dx.doi.org/10.1016/j.mce.2010.08.015
PMid:20801187
Dinh P, Hazel A, Palispis W, Suryadevara S, et al. (2009). Functional assessment after sciatic nerve injury in a rat model. Microsurgery 29: 644-649.
http://dx.doi.org/10.1002/micr.20685
PMid:19653327
Gilson H, Schakman O, Kalista S, Lause P, et al. (2009). Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am. J. Physiol. Endocrinol. Metab. 297: E157-E164.
http://dx.doi.org/10.1152/ajpendo.00193.2009
PMid:19435857
Hill JJ, Davies MV, Pearson AA, Wang JH, et al. (2002). The myostatin propeptide and the follistatin-related gene are inhibitory binding proteins of myostatin in normal serum. J. Biol. Chem. 277: 40735-40741.
http://dx.doi.org/10.1074/jbc.M206379200
PMid:12194980
Lakshman KM, Bhasin S, Corcoran C, Collins-Racie LA, et al. (2009). Measurement of myostatin concentrations in human serum: Circulating concentrations in young and older men and effects of testosterone administration. Mol. Cell Endocrinol. 302: 26-32.
http://dx.doi.org/10.1016/j.mce.2008.12.019
PMid:19356623
Lee SJ (2010). Extracellular regulation of myostatin: A molecular rheostat for muscle mass. Immunol. Endocr. Metab. Agents Med. Chem. 10: 183-194.
http://dx.doi.org/10.2174/187152210793663748
PMid:21423813 PMCid:3060380
Lee SJ and McPherron AC (2001). Regulation of myostatin activity and muscle growth. Proc. Natl. Acad. Sci. U. S. A. 98: 9306-9311.
http://dx.doi.org/10.1073/pnas.151270098
PMid:11459935 PMCid:55416
Lee SJ, Lee YS, Zimmers TA, Soleimani A, et al. (2010). Regulation of muscle mass by follistatin and activins. Mol. Endocrinol. 24: 1998-2008.
http://dx.doi.org/10.1210/me.2010-0127
PMid:20810712 PMCid:2954636
Liu M, Zhang D, Shao C, Liu J, et al. (2007). Expression pattern of myostatin in gastrocnemius muscle of rats after sciatic nerve crush injury. Muscle Nerve 35: 649-656.
http://dx.doi.org/10.1002/mus.20749
PMid:17326119
Matzuk MM, Lu N, Vogel H, Sellheyer K, et al. (1995). Multiple defects and perinatal death in mice deficient in follistatin. Nature 374: 360-363.
http://dx.doi.org/10.1038/374360a0
PMid:7885475
McPherron AC, Lawler AM and Lee SJ (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387: 83-90.
http://dx.doi.org/10.1038/387083a0
PMid:9139826
Rodino-Klapac LR, Haidet AM, Kota J, Handy C, et al. (2009). Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 39: 283-296.
http://dx.doi.org/10.1002/mus.21244
PMid:19208403 PMCid:2717722
Thies RS, Chen T, Davies MV, Tomkinson KN, et al. (2001). GDF-8 propeptide binds to GDF-8 and antagonizes biological activity by inhibiting GDF-8 receptor binding. Growth Factors 18: 251-259.
http://dx.doi.org/10.3109/08977190109029114
PMid:11519824
Thompson TB, Lerch TF, Cook RW, Woodruff TK, et al. (2005). The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding. Dev. Cell 9: 535-543.
http://dx.doi.org/10.1016/j.devcel.2005.09.008
PMid:16198295
Ueno N, Ling N, Ying SY, Esch F, et al. (1987). Isolation and partial characterization of follistatin: a single-chain Mr 35,000 monomeric protein that inhibits the release of follicle-stimulating hormone. Proc. Natl. Acad. Sci. U. S. A. 84: 8282-8286.
http://dx.doi.org/10.1073/pnas.84.23.8282
PMid:3120188 PMCid:299526
Wallimann T, Wyss M, Brdiczka D, Nicolay K, et al. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem. J. 281: 21-40.
PMid:1731757 PMCid:1130636
Whittemore LA, Song K, Li X, Aghajanian J, et al. (2003). Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem. Biophys. Res. Commun. 300: 965-971.
http://dx.doi.org/10.1016/S0006-291X(02)02953-4
Wolfman NM, McPherron AC, Pappano WN, Davies MV, et al. (2003). Activation of latent myostatin by the BMP-1/ tolloid family of metalloproteinases. Proc. Natl. Acad. Sci. U. S. A. 100: 15842-15846.
http://dx.doi.org/10.1073/pnas.2534946100
PMid:14671324 PMCid:307655
Zhang D, Liu M, Ding F and Gu X (2006). Expression of myostatin RNA transcript and protein in gastrocnemius muscle of rats after sciatic nerve resection. J. Muscle Res. Cell Motil. 27: 37-44.
http://dx.doi.org/10.1007/s10974-005-9050-5
PMid:16450055