Publications
Found 10 results
Filters: Author is C.Z. Lei [Clear All Filters]
“Analysis of POU1F1 gene DdeI polymorphism in Chinese goats”, vol. 15, p. -, 2016.
, “Analysis of POU1F1 gene DdeI polymorphism in Chinese goats”, vol. 15, p. -, 2016.
, “High polymorphism at microsatellite loci in the Chinese donkey”, vol. 15, p. -, 2016.
, “High polymorphism at microsatellite loci in the Chinese donkey”, vol. 15, p. -, 2016.
, “Frequency of gray coat color in native Chinese horse breeds”, vol. 14, pp. 14144-14150, 2015.
, “Y-STR INRA189 polymorphisms in Chinese yak breeds”, vol. 14, pp. 18859-18862, 2015.
, “AGPAT6 polymorphism and its association with milk traits of dairy goats”, vol. 10, pp. 2747-2756, 2011.
, Agarwal AK, Barnes RI and Garg A (2006). Functional characterization of human 1-acylglycerol-3-phosphate acyltransferase isoform 8: cloning, tissue distribution, gene structure, and enzymatic activity. Arch. Biochem. Biophys. 449: 64-76.
http://dx.doi.org/10.1016/j.abb.2006.03.014
PMid:16620771
Agarwal AK, Sukumaran S, Bartz R, Barnes RI, et al. (2007). Functional characterization of human 1-acylglycerol- 3-phosphate-O-acyltransferase isoform 9: cloning, tissue distribution, gene structure, and enzymatic activity. J. Endocrinol. 193: 445-457.
http://dx.doi.org/10.1677/JOE-07-0027
PMid:17535882
Aguado B and Campbell RD (1998). Characterization of a human lysophosphatidic acid acyltransferase that is encoded by a gene located in the class III region of the human major histocompatibility complex. J. Biol. Chem. 273: 4096-4105.
http://dx.doi.org/10.1074/jbc.273.7.4096
PMid:9461603
Beigneux AP, Vergnes L, Qiao X, Quatela S, et al. (2006). Agpat6 - a novel lipid biosynthetic gene required for triacylglycerol production in mammary epithelium. J. Lipid Res. 47: 734-744.
http://dx.doi.org/10.1194/jlr.M500556-JLR200
PMid:16449762 PMCid:3196597
Bionaz M and Loor JJ (2008). ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 138: 1019-1024.
PMid:18492828
Chen YQ, Kuo MS, Li S, Bui HH, et al. (2008). AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase. J. Biol. Chem. 283: 10048-10057.
http://dx.doi.org/10.1074/jbc.M708151200
PMid:18238778 PMCid:2442282
Coleman RA and Lee DP (2004). Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43: 134-176.
http://dx.doi.org/10.1016/S0163-7827(03)00051-1
Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, et al. (2007). A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315: 525-528.
http://dx.doi.org/10.1126/science.1135308
PMid:17185560
Komar AA (2007). Silent SNPs: impact on gene function and phenotype. Pharmacogenomics. 8: 1075-1080.
http://dx.doi.org/10.2217/14622416.8.8.1075
PMid:17716239
Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 73: 8-12.
http://dx.doi.org/10.1016/j.smallrumres.2006.10.009
Nagle CA, Vergnes L, Dejong H, Wang S, et al. (2008). Identification of a novel sn-glycerol-3-phosphate acyltransferase isoform, GPAT4, as the enzyme deficient in Agpat6-/- mice. J. Lipid Res. 49: 823-831.
http://dx.doi.org/10.1194/jlr.M700592-JLR200
PMid:18192653 PMCid:2819352
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.
Sham P, Bader JS, Craig I, O’Donovan M, et al. (2002). DNA Pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3: 862-871.
http://dx.doi.org/10.1038/nrg930
PMid:12415316
Sukumaran S, Barnes RI, Garg A and Agarwal AK (2009). Functional characterization of the human 1-acylglycerol- 3-phosphate-O-acyltransferase isoform 10/glycerol-3-phosphate acyltransferase isoform 3. J. Mol. Endocrinol. 42: 469-478.
http://dx.doi.org/10.1677/JME-09-0010
PMid:19318427
Takeuchi K and Reue K (2009). Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296: E1195-E1209.
http://dx.doi.org/10.1152/ajpendo.90958.2008
PMid:19336658 PMCid:2692402
Vergnes L, Beigneux AP, Davis R, Watkins SM, et al. (2006). Agpat6 deficiency causes subdermal lipodystrophy and resistance to obesity. J. Lipid Res. 47: 745-754.
http://dx.doi.org/10.1194/jlr.M500553-JLR200
PMid:16436371 PMCid:2901549
Ye GM, Chen C, Huang S, Han DD, et al. (2005). Cloning and characterization a novel human 1-acyl-sn-glycerol-3- phosphate acyltransferase gene AGPAT7. DNA Seq. 16: 386-390.
http://dx.doi.org/10.1080/10425170500213712
PMid:16243729
“Lack of association of single nucleotide polymorphisms of the bovine Flt-1 gene with growth traits in Chinese cattle breeds”, vol. 10, pp. 359-367, 2011.
,
Alitalo K, Tammela T and Petrova TV (2005). Lymphangiogenesis in development and human disease. Nature 438: 946- 953.
http://dx.doi.org/10.1038/nature04480
PMid:16355212
Autiero M, Luttun A, Tjwa M and Carmeliet P (2003). Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J. Thromb. Haemost. 1: 1356-1370.
http://dx.doi.org/10.1046/j.1538-7836.2003.00263.x
PMid:12871269
Cao H, Urban JF Jr and Anderson RA (2008). Insulin increases tristetraprolin and decreases VEGF gene expression in mouse 3T3-L1 adipocytes. Obesity 16: 1208-1218.
http://dx.doi.org/10.1038/oby.2008.65
PMid:18388887
De Vries C, Escobedo JA, Ueno H, Houck K, et al. (1992). The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255: 989-991.
http://dx.doi.org/10.1126/science.1312256
PMid:1312256
Ferrara N (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocrinol. Rev. 25: 581-611.
http://dx.doi.org/10.1210/er.2003-0027
PMid:15294883
Ferrara N, Gerber HP and LeCouter J (2003). The biology of VEGF and its receptors. Nat. Med. 9: 669-676.
http://dx.doi.org/10.1038/nm0603-669
PMid:12778165
Giantonio BJ, Catalano PJ, Meropol NJ, O'Dwyer PJ, et al. (2007). Bevacizumab in combination with oxaliplatin, fluorouracil, and leucovorin (FOLFOX4) for previously treated metastatic colorectal cancer: results from the Eastern Cooperative Oncology Group Study E3200. J. Clin. Oncol. 25: 1539-1544.
http://dx.doi.org/10.1200/JCO.2006.09.6305
PMid:17442997
MacNeil MD and Grosz MD (2002). Genome-wide scans for QTL affecting carcass traits in Hereford x composite double backcross populations. J. Anim. Sci. 80: 2316-2324.
PMid:12350008
Pang Y, Lei C, Zhang C, Lan X, et al. (2010). The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle. Mol. Biol. Rep. DOI: 10.1007/s11033-010-0163-6.
http://dx.doi.org/10.1007/s11033-010-0163-6
Peng H, Usas A, Olshanski A, Ho AM, et al. (2005). VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. J. Bone Miner. Res. 20: 2017-2027.
http://dx.doi.org/10.1359/JBMR.050708
PMid:16234975
Quinn TP, Peters KG, de Vries C, Ferrara N, et al. (1993). Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl. Acad. Sci. U. S. A. 90: 7533-7537.
http://dx.doi.org/10.1073/pnas.90.16.7533
PMid:8356051 PMCid:47176
Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York.
Tang K, Breen EC, Gerber HP, Ferrara NM, et al. (2004). Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol. Genomics 18: 63-69.
http://dx.doi.org/10.1152/physiolgenomics.00023.2004
PMid:15084712
Tebbe CC, Schmalenberger A, Peters S and Schwieger F (2001). Single Strand Conformation Polymorphism (SSCP) for Microbial Community Analysis. In: Environmental Molecular Microbiology: Protocols and Applications (Rochelle PA, ed.). Horizon Scientific Press, Wymondham, 161-175.
Yang D, Chen H, Wang X, Tian Z, et al. (2007). Association of polymorphisms of leptin gene with body weight and body sizes indexes in Chinese indigenous cattle. J. Genet. Genomics 34: 400-405.
http://dx.doi.org/10.1016/S1673-8527(07)60043-5
Yang JC, Haworth L, Sherry RM, Hwu P, et al. (2003). A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349: 427-434.
http://dx.doi.org/10.1056/NEJMoa021491
PMid:12890841 PMCid:2275324
Zhang C, Chen H, Zhang L, Zhao M, et al. (2008). Association of polymorphisms of the GHRHR gene with growth traits in cattle. Arch. Tierz. 51: 300-301.
Zhang Q, Chen H, Zhao S, Zhang L, et al. (2009). Single nucleotide polymorphisms and haplotypic diversity in the bovine PRKAB1 gene. Mol. Biotechnol. 43: 193-199.
http://dx.doi.org/10.1007/s12033-009-9194-4
PMid:19578998
“A novel genetic variant of the goat Six6 gene and its association with production traits in Chinese goat breeds”, vol. 10, pp. 3888-3900, 2011.
,
Betty P, Nathalie I and Jean B (2004). Efficient screening for expressed sequence tag polymorphisms (ESTPs) by DNA pool sequencing and denaturing gradient gel electrophoresis (DGGE) in spruces. Mol. Breed. 13: 263-279.
http://dx.doi.org/10.1023/B:MOLB.0000022528.01656.c8
Bhattacharya TK, Chatterjee RN, Sharma RP, Niranjan M, et al. (2011). Associations between novel polymorphisms at the 5'-UTR region of the prolactin gene and egg production and quality in chickens. Theriogenology 75: 655-661.
http://dx.doi.org/10.1016/j.theriogenology.2010.10.005
PMid:21111467
Cheyette BN, Green PJ, Martin K, Garren H, et al. (1994). The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12: 977-996.
http://dx.doi.org/10.1016/0896-6273(94)90308-5
Conte I, Morcillo J and Bovolenta P (2005). Comparative analysis of Six 3 and Six 6 distribution in the developing and adult mouse brain. Dev. Dyn. 234: 718-725.
http://dx.doi.org/10.1002/dvdy.20463
PMid:15973738
Diaczok D, Romero C, Zunich J, Marshall I, et al. (2008). A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. J. Clin. Endocr. Metab. 93: 4351-4359.
http://dx.doi.org/10.1210/jc.2008-1189
PMid:18728160 PMCid:2582563
Eller A, Branch DW, Nelson L and Silver R (2008). 247: The -634GC polymorphism in the regulatory 5ꞌ untranslated region (5' UTR) of the vascular endothelial growth factor (VEGF) gene is associated with unexplained recurrent pregnancy loss (RPL). Am. J. Obstet. Gynecol. 199 (Suppl 1): S81.
http://dx.doi.org/10.1016/j.ajog.2008.09.275
Greenwood TA and Kelsoe JR (2003). Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 82: 511-520.
http://dx.doi.org/10.1016/S0888-7543(03)00142-3
Gupta N, Ahlawat SPS, Kumar D, Gupta SC, et al. (2007). Single nucleotide polymorphism in growth hormone gene exon-4 and exon-5 using PCR-SSCP in Black Bengal goats - a prolific meat breed of India. Meat Sci. 76: 658-665.
http://dx.doi.org/10.1016/j.meatsci.2007.02.005
PMid:22061242
Hu S, Mamedova A and Hegde RS (2008). DNA-binding and regulation mechanisms of the SIX family of retinal determination proteins. Biochemistry 47: 3586-3594.
http://dx.doi.org/10.1021/bi702186s
PMid:18293925
Huai YT, Lan XY, Ma L, Wang J, et al. (2011). Novel mutation in TGA stop-codon of bovine SIX6 gene. Mol. Biol. 45: 218-224.
http://dx.doi.org/10.1134/S0026893310061093
Jean D, Bernier G and Gruss P (1999). Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech. Dev. 84: 31-40.
http://dx.doi.org/10.1016/S0925-4773(99)00068-4
Kim DJ, Park BL, Yoon S, Lee HK, et al. (2007). 5' UTR polymorphism of dopamine receptor D1 (DRD1) associated with severity and temperament of alcoholism. Biochem. Biophys. Res. Commun. 357: 1135-1141.
http://dx.doi.org/10.1016/j.bbrc.2007.04.074
PMid:17466946
Kumar JP (2009). The sine oculis homeobox (SIX) family of transcription factors as regulators of development and disease. Cell Mol. Life Sci. 66: 565-583.
http://dx.doi.org/10.1007/s00018-008-8335-4
PMid:18989625 PMCid:2716997
Lai X, Lan X, Chen H, Wang X, et al. (2009). A novel SNP of the Hesx1 gene in bovine and its associations with average daily gain. Mol. Biol. Rep. 36: 1677-1681.
http://dx.doi.org/10.1007/s11033-008-9368-3
PMid:18853282
Lan XY, Pan CY, Chen H, Zhang CL, et al. (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Rumin. Res. 73: 12.
http://dx.doi.org/10.1016/j.smallrumres.2006.10.009
Lan XY, Pan CY, Li JY, Guo YW, et al. (2009a). Twelve novel SNPs of the goat POU1F1 gene and their associations with cashmere traits. Small Rumin. Res. 85: 116-121.
http://dx.doi.org/10.1016/j.smallrumres.2009.08.002
Lan X, Pan C, Zhang L, Zhao M, et al. (2009b). A novel missense (A79V) mutation of goat PROP1 gene and its association with production traits. Mol. Biol. Rep. 36: 2069-2073.
http://dx.doi.org/10.1007/s11033-008-9418-x
PMid:19031010
Lan XY, Lai X, Li ZJ, Wang J, et al. (2010) Effects of genetic variability of the caprine homeobox transcription factor HESX1 gene on performance traits. Mol. Biol. Rep. 37: 441-449.
http://dx.doi.org/10.1007/s11033-009-9625-0
PMid:19629745
Lasky-Su J and Lange C (2010). Statistical challenges for genome-wide association studies of suicidality using family data. Eur. Psychiatry 25: 307-309.
http://dx.doi.org/10.1016/j.eurpsy.2009.12.019
PMid:20447807 PMCid:2925169
Lawson MJ and Zhang L (2008). Housekeeping and tissue-specific genes differ in simple sequence repeats in the 5'-UTR region. Gene 407: 54-62.
http://dx.doi.org/10.1016/j.gene.2007.09.017
PMid:17964742
Li MJ, Lan XY, Chen H, Zhang LZ, et al. (2008). The novel missense mutation of goat LHX4 gene. Small Rumin. Res. 79: 109-112.
http://dx.doi.org/10.1016/j.smallrumres.2008.06.005
Li S, Crenshaw EB, Rawson EJ, Simmons DM, et al. (1990). Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene Pit-1. Nature 347: 528-533.
http://dx.doi.org/10.1038/347528a0
PMid:1977085
Liang Y, Cui J, Yang G, Leung FC, et al. (2006). Polymorphisms of 5' flanking region of chicken prolactin gene. Domest. Anim. Endocrinol. 30: 1-16.
http://dx.doi.org/10.1016/j.domaniend.2005.05.006
PMid:15970423
Medeiros-Neto G, de Lacerda L and Wondisford FE (1997). Familial Congenital Hypothyroidism Caused by Abnormal and Bioinactive TSH due to Mutations in the beta-Subunit Gene. Trends Endocrinol. Metab. 8: 15-20.
http://dx.doi.org/10.1016/S1043-2760(96)00203-2
Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273.
http://dx.doi.org/10.1073/pnas.76.10.5269
PMid:291943 PMCid:413122
Pedersen LD, Sorensen AC and Berg P (2009). Marker-assisted selection can reduce true as well as pedigree-estimated inbreeding. J. Dairy Sci. 92: 2214-2223.
http://dx.doi.org/10.3168/jds.2008-1616
PMid:19389980
Petrie JR, Pearson ER and Sutherland C (2011). Implications of genome wide association studies for the understanding of type 2 diabetes pathophysiology. Biochem. Pharmacol. 81: 471-477.
http://dx.doi.org/10.1016/j.bcp.2010.11.010
PMid:21111713
Pfäffle R and Klammt J (2011). Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency. Best. Pract. Res. Clin. Endocrinol. Metab. 25: 43-60.
http://dx.doi.org/10.1016/j.beem.2010.10.014
PMid:21396574
Rachel L, Daniel DC, Nichol LGM and Mellon PL (2011). Hypothalamic dysregulation and infertility in mice lacking the homeodomain protein Six6. J. Neurosci. 31: 426-438.
http://dx.doi.org/10.1523/JNEUROSCI.1688-10.2011
PMid:21228153 PMCid:3103738
Sahana G, Guldbrandtsen B and Lund MS (2011). Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. J. Dairy Sci. 94: 479-486.
http://dx.doi.org/10.3168/jds.2010-3381
PMid:21183059
Sambrook J and Russell DW (2001). Molecular Cloning: A Laboratory Manual. 3rd edn. Cold Spring Harbor Laboratory Press, New York.
Sham P, Bader JS, Craig I, O'Donovan M, et al. (2002). DNA Pooling: a tool for large-scale association studies. Nat. Rev. Genet. 3: 862-871.
http://dx.doi.org/10.1038/nrg930
PMid:12415316
Sobrier ML, Maghnie M, Vie-Luton MP, Secco A, et al. (2006). Novel HESX1 mutations associated with a life-threatening neonatal phenotype, pituitary aplasia, but normally located posterior pituitary and no optic nerve abnormalities. Clin. Endocrinol. Metab. 91: 4528-4536.
http://dx.doi.org/10.1210/jc.2006-0426
PMid:16940453
Tétreault N, Champagne MP and Bernier G (2009). The LIM homeobox transcription factor Lhx2 is required to specify the retina field and synergistically cooperates with Pax6 for Six6 trans-activation. Dev. Biol. 327: 541-550.
http://dx.doi.org/10.1016/j.ydbio.2008.12.022
PMid:19146846
Thomas MG, Enns RM, Shirley KL, Garcia MD, et al. (2007). Associations of DNA polymorphisms in growth hormone and its transcriptional regulators with growth and carcass traits in two populations of Brangus bulls. Genet. Mol. Res. 6: 222-237.
PMid:17469072
Wang DY, Zhang YJ, Liu YQ and Yang YZ (2009). Karyotype and single nucleotide polymorphism of the prolactin gene in milking bucks. Small Rumin. Res. 87: 96-101.
http://dx.doi.org/10.1016/j.smallrumres.2009.09.032
Wang GB, Li CR, Yang J, Wen PQ, et al. (2011). A regulatory polymorphism in promoter region of TNFR1 gene is associated with Kawasaki disease in Chinese individuals. Hum. Immunol. 72: 451-457.
http://dx.doi.org/10.1016/j.humimm.2011.02.004
PMid:21315128
Weasner BP and Kumar JP (2009). The non-conserved C-terminal segments of Sine Oculis Homeobox (SIX) proteins confer functional specificity. Genesis 47: 514-523.
http://dx.doi.org/10.1002/dvg.20517
PMid:19422020 PMCid:2738589
Weller JI and Ron M (2011). Invited review: quantitative trait nucleotide determination in the era of genomic selection. J. Dairy Sci. 94: 1082-1090.
http://dx.doi.org/10.3168/jds.2010-3793
PMid:21338774
“A novel polymorphism of the lactoferrin gene and its association with milk composition and body traits in dairy goats”, vol. 9, pp. 2199-2206, 2010.
, Brandl N, Zemann A, Kaupe I, Marlovits S, et al. (2010). Signal transduction and metabolism in chondrocytes is modulated by lactoferrin. Osteoarthritis Cartilage 18: 117-125.
http://dx.doi.org/10.1016/j.joca.2009.08.012
PMid:19747587
Bullen JJ (1972). Iron-binding proteins in milk and resistance to Escherichia coli infection in infants. Proc. R. Soc. Med. 65: 1086.
PMid:4568537 PMCid:1644425
Cohen MS, Britigan BE, French M and Bean K (1987). Preliminary observations on lactoferrin secretion in human vaginal mucus: variation during the menstrual cycle, evidence of hormonal regulation, and implications for infection with Neisseria gonorrhoeae. Am. J. Obstet. Gynecol. 157: 1122-1125.
PMid:3120589
Cornish J (2004). Lactoferrin promotes bone growth. Biometals 17: 331-335.
http://dx.doi.org/10.1023/B:BIOM.0000027713.18694.91
PMid:15222486
Cornish J, Grey AB, Naot D and Palmano KP (2005). Lactoferrin and bone: an overview of recent progress. Aust. J. Dairy Technol. 60: 53-57.
Gutteridge JM, Paterson SK, Segal AW and Halliwell B (1981). Inhibition of lipid peroxidation by the iron-binding protein lactoferrin. Biochem. J. 199: 259-261.
PMid:7337708 PMCid:1163360
Jenssen H and Hancock RE (2009). Antimicrobial properties of lactoferrin. Biochimie 91: 19-29.
http://dx.doi.org/10.1016/j.biochi.2008.05.015
PMid:18573312
Jeremy B (1995). Lactoferrin: a multifunctional immunoregulatory protein? Immunol. Today 16: 417-419.
http://dx.doi.org/10.1016/0167-5699(95)80016-6
Kim SJ, Sohn BH, Jeong S, Pak KW, et al. (1999). High-level expression of human lactoferrin in milk of transgenic mice using genomic lactoferrin sequence. J. Biochem. 126: 320-325.
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a022452
PMid:10423524
Kinsella JE and Whitehead DM (1989). Proteins in whey: chemical, physical, and functional properties. Adv. Food Nutr. Res. 33: 343-438.
http://dx.doi.org/10.1016/S1043-4526(08)60130-8
Lan XY, Pan CY, Chen H and Zhang CL (2007). An AluI PCR-RFLP detecting a silent allele at the goat POU1F1 locus and its association with production traits. Small Ruminant Res. 73: 8-12.
http://dx.doi.org/10.1016/j.smallrumres.2006.10.009
Leon-Sicairos N, Canizalez-Roman A, de la Garza M, Reyes-Lopez M, et al. (2009). Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie 91: 133-140.
http://dx.doi.org/10.1016/j.biochi.2008.06.009
PMid:18625283
Li GH, Zhang Y, Sun DX and Li N (2004). Study on the polymorphism of bovine lactoferrin gene and its relationship with mastitis. Anim. Biotechnol. 15: 67-76.
http://dx.doi.org/10.1081/ABIO-120037899
PMid:15248601
Liu LH, Gladwell W and Teng CT (2002). Detection of exon polymorphisms in the human lactoferrin gene. Biochem. Cell Biol. 80: 17-22.
http://dx.doi.org/10.1139/o01-207
PMid:11908638
Livney YD (2010). Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15: 73-83.
http://dx.doi.org/10.1016/j.cocis.2009.11.002
Masson PL, Heremans JF and Dive CH (1966). An iron-binding protein common to many external secretions. Clin. Chim. Acta 14: 735-739.
http://dx.doi.org/10.1016/0009-8981(66)90004-0
Mohamed JA, DuPont HL, Jiang ZD, Belkind-Gerson J, et al. (2007). A novel single-nucleotide polymorphism in the lactoferrin gene is associated with susceptibility to diarrhea in North American travelers to Mexico. Clin. Infect. Dis. 44: 945-952.
http://dx.doi.org/10.1086/512199
PMid:17342646
Nei M and Roychoudhury AK (1974). Sampling variances of heterozygosity and genetic distance. Genetics 76: 379-390.
PMid:4822472 PMCid:1213072
Nei M and Li WH (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U. S. A. 76: 5269-5273.
http://dx.doi.org/10.1073/pnas.76.10.5269
PMid:291943 PMCid:413122
Nichols BL, McKee KS, Henry JF and Putman M (1987). Human lactoferrin stimulates thymidine incorporation into DNA of rat crypt cells. Pediatr. Res. 21: 563-567.
http://dx.doi.org/10.1203/00006450-198706000-00011
PMid:3496579
Park I, Schaeffer E, Sidoli A, Baralle FE, et al. (1985). Organization of the human transferrin gene: direct evidence that it originated by gene duplication. Proc. Natl. Acad. Sci. U. S. A. 82: 3149-3153.
http://dx.doi.org/10.1073/pnas.82.10.3149
PMid:3858812 PMCid:397732
Teng CT, Pentecost BT, Marshall A, Solomon A, et al. (1987). Assignment of the lactotransferrin gene to human chromosome 3 and to mouse chromosome 9. Somat. Cell Mol. Genet. 13: 689-693.
http://dx.doi.org/10.1007/BF01534490
PMid:3478818
Teng CT, Pentecost BT, Chen YH, Newbold RR, et al. (1989). Lactotransferrin gene expression in the mouse uterus and mammary gland. Endocrinology 124: 992-999.
http://dx.doi.org/10.1210/endo-124-2-992
PMid:2463910
Williams J (1982). The evolution of transferrin. Trends Biochem. Sci. 7: 394-397.
http://dx.doi.org/10.1016/0968-0004(82)90183-9
Yamauchi K, Tomita M, Giehl TJ and Ellison RT III (1993). Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728.
PMid:8423097 PMCid:302785
Yamauchi K, Wakabayashi H, Shin K and Takase M (2006). Bovine lactoferrin: benefits and mechanism of action against infections. Biochem. Cell Biol. 84: 291-296.
http://dx.doi.org/10.1139/o06-054
PMid:16936799